ECE 206 Advanced Calculus 2, Solutions to Assignment 12

Extra problems, not to be handed in
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Let « be the loop that follows first the line A, given by A(t) =t for —R <t < R, and then the semicircle o
given by o(t) = Re'! for 0 < t < 7, so we have

[ [

Let a; be the loop around the right half of o and let as be the loop around the left half of o so that «ay
winds once around e?™/3, and ay winds once around €27/3, and we have
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Let a be the loop which follows first the line A given by A(t) = ¢ for —R < ¢ < R, then the semicircle o given
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Let a; be the loop around the right half of « and let s be the loop around the left half of a so that a;
winds once around 1 + ¢ and a9 winds once around —1 + 7 and we have
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logarithm given by logz = In|z| +i6(z) with —% < 6(z) < 2Z. Let « be the loop which follows the line A
given by A(t) =t for € < t < R, then the semicircle o given by o(t) = Re't for 0 < t < , then the line
segment 1 where p is given by u(t) = —t for 0 < t < m, and then the semicircle =% where 7 is given by
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Incidentally, we also find that K = —%2.



5: For a function f(z) with « € R, the Fourier transform of f(z) is defined to be the function F'(w) = F(f)(w)

defined for s € R by .
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Given F(w) the function f(x) can be recovered using the inverse transform
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Suppose first that w < 0. Let « be the loop which follows first the line A given by A(t) =t for —R <t < R,

then the semicircle o given by o(t) = Ret for 0 <t < 7 so that
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When w > 0, a similar argument, using the loop a which follows the line A=! where \(t) = ¢ for
—R <t < R followed by the semicircle o given by o(t) = —Re' for 0 < t < 7, and setting G, (z) = ¢ -
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6: For a function f(¢) defined for 0 < t € R, the Laplace transform of f(t¢) is the function F(s) = L(f)(s)

defined for all s in a set of the form {s € C|Re(s) > ¢} for some ¢ € R, by

Fo) = £ = [ e ar

Given F'(s) the function f(¢) can be recovered using the inverse transform
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where a > c and Ay r(u) =a+iufor —R <u < R.
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deﬁned for s € C with Re(s) >

Solution: The inverse Laplace transform of F(s) is given by
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Let @« = ag be the loop which follows the line A = Ag, then the line =" where 4 = pg is given by
w(u) =u+iR for 0 < u < 1, then the semicircle o = o given by o(u) = iRe™ for 0 < u < 7, and then the
line v = v given by v(u) = v — iR for 0 < u < 1 so that we have
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It follows that
f(t) =2cos2t + 3 sin2t.



