
ECE 206 Advanced Calculus 2, Solutions to Assignment 11

1: (a) Let α(t) = t+ i eit with 0 ≤ t ≤ 2π. Sketch the path α, then find its length.

Solution: We can sketch the path α by plotting points. The path is a cycloid

1

0
π 2π

−1

We have α′(t) = 1− eit = (1− cos t)− i sin t, so

|α′(t)|2 = (1− cos t)2 + (sin t)2 = 1− 2 cos t+ cos2 t+ sin2 t = 2− 2 cos t = 4 sin2(t/2) ,

and so

L(α) =

∫ 2π

0

|α′(t)| dt = 2

∫ π

0

2 sin(t/2) dt =
[
− 8 cos(t/2)

]π
0

= 8 .

(b) Let α(t) = (2 − 4 sin t)eit for 0 ≤ t ≤ 2π. Sketch α(t) and use the sketch to find the winding numbers
η(α, ai) for a1 = i, a2 = −i and a3 = −3i.

Solution: We make a table of values and plot points on a polar grid.

θ = t r = 2− 4 sin t

0 2
π/6 0
π/4 2− 2

√
2

π/3 2− 2
√

3
π/2 −2

From the sketch we see that η(α, i) = 0, η(α(−i) = 2 and η(α− 3i) = 1.

2: (a) Find

∫ 2π

0

sin t eit dt.

Solution: We have∫ 2π

0

(sin t)ei t dt =

∫ 2π

0

sin t (cos t+ i sin t) dt =

∫ 2π

0

sin t cos t+ i sin2 t dt

=

∫ 2π

0

sin t cos t dt+ i

∫ 2π

0

1
2 −

1
2 cos 2t dt

=
[
1
2 sin2 t

]2π
0

+ i
[
1
2 −

1
4 sin 2t

]2π
0

= i π .

(b) Find

∫
α

ez dz

(ez + i)2
where α(t) = i π4

(
1 + ei t

)
for 0 ≤ t ≤ π.

Solution: Make the substitution u = ez + i, du = ez dz. Then∫
ez dz

(ez + i)2
=

∫
du

u2
= − 1

u
+ c = − 1

ez + i
+ c .

By the Fundamental Theorem of Calculus,∫
α

ez dz

(ez + i)2
=

[
− 1

ez + i

]α(π)
α(0)

=

[
− 1

ez + i

]0
i π/2

= − 1
1+i + 1

2i = − 1−i
2 −

i
2 = − 1

2 .



3: (a) Find

∫
α

z2 − 2i z dz where α(t) = −i+ (1 + i)t for 0 ≤ t ≤ 3.

Solution: We have ∫
α

z2 − 2i z dz =

∫ 3

0

(
α(t)2 − 2i α(t)

)
α′(t) dt

=

∫ 3

0

((
− i+ (1 + i) t

)2 − 2i
(
i+ (1− i) t

))
(1 + i) dt

= (1 + i)

∫ 3

0

−1− 2i(1 + i) t+ 2i t2 − 2i(1− i) t dt

= (1 + i)

∫ 3

0

1− 4i t+ 2i t2 dt

= (1 + i)
[
t− 2i t2 + 2

3 i t
3
]3
0

= (1 + i)(3− 18i+ 18i) = 3(1 + i) .

(b) Find

∫
α

z
√
z + 1 dz , using the branch of the square root given by

√
r eiθ =

√
r ei θ/2 for r > 0 and

−π < θ < π, where α(t) = (1− i) + (2 + i)t for −1 ≤ t ≤ 1.

Solution: To find
∫
z
√
z + 1 dz make the substitution w =

√
z + 1 so that w2 = z+ 1 and 2w dw = dz. Then

we have ∫
z
√
z + 1 dz =

∫
(w2 − 1) · w · 2w dw =

∫
2w4 − 2w2 dw = 2

5w
5 − 2

3w
3

=
(
2
5w

4 − 2
3w

2
)
w =

(
2
5 (z + 1)2 − 2

3 (z + 1)
)√
z + 1 ,

where we are using the same branch of the square root. Since α(−1) = −1− 2i and α(1) = 3, we have∫
α

f =
[(

2
5 (z + 1)2 − 2

3 (z + 1)
)√
z + 1

]3
−1−2i

=
(
2
5 (4)2 − 2

3 (4)
)√

4−
(
2
5 (−2i)2 − 2

3 (−2i)
)√
−2i

=
(
32
5 −

8
3

)
(2)−

(
− 8

5 + 4
3 i
)
(1− i) = 64

5 −
16
3 + 8

5 −
8
5 i−

4
3 i−

4
3

=
(
72
5 −

20
3

)
− i
(
8
5 + 4

3

)
= 116

15 −
44
15 i .

4: Find

∫
α

log(z + i)

z2(z − 1)
dz where log(z+ i) = ln |z+ i|+ i θ(z+ i) for −π2 < θ(z+ i) < 3π

2 and α(t) = (1 + i) + 2eit

with 0 ≤ t ≤ 2π.

Solution: Let f(z) =
log(z + i)

z2(z − 1)
, and let α1 and α2 be loops as shown below. Also, let F (z) =

log(z + i)

z2
and

G(z) =
log(z + i)

z − 1
so G′(z) =

(z − 1)/(z + i)− log(z + i)

(z − 1)2
. Then, by Cauchy’s Integral Formulas, we have∫

α

f =

∫
α1

f +

∫
α2

f =

∫
α1

F (z)

z − 1
dz +

∫
α2

G(z)

z2
dz = 2πi

(
F (1) +G′(0)

)
= 2πi

(
log(1 + i) + i− log(i)

)
= 2πi

(
ln
√

2 + iπ4 + i− iπ2
)

= π2

2 − 2π + i π ln 2 .

α2 α1



5: Find

∫
α

dz

z(z2 + 1)2
where α(t) = i+

√
2 eit with 5π

4 ≤ t ≤
7π
4 .

Solution: Note that z(z2 + 1)2 = z(z − i)2(z + i)2. From a sketch of the curve α (it is an arc of the circle
of radius

√
2 centred at i which starts at the point −1 and winds counterclockwise around the origin ending

at the point 1) we see that η(α, 0) = 1
2 , η(α,−i) = − 1

4 and η(α, i) = 1
4 . Now we make a partial fractions

decomposition. In order to get

1

z(z2 + 1)2
=
A

z
+

B

z + i
+

C

(z + i)2
+

D

z − i
+

E

(z − i)2we need

1 = A(z + i)2(z − i)2 +Bz(z + i)(z − i)2 + Cz(z − i)2 +Dz(z + i)2(z − i) + Ez(z + i)2 .

Put in z = 0 to get 1 = A(i)2(−i)2 = A, so A = 1. Put in z = i to get 1 = E(i)(2i)2 = −4i E so
E = 1

4 i. Put in z = −i to get 1 = C(−i)(−2i)2 = 4i C so C = − 1
4 i. Equate the coefficients of z to get

0 = −iB − C + iD − E = −iB + iD so we see that B = D. Then equate the coefficients of z4 to get
0 = A+B +D so B +D = −1 and so we have B = D = − 1

2 . Thus∫
α

dz

z(z2 + 1)2
=

∫
α

1

z
−

1
2

z + i
−

1
4 i

(z + i)2
−

1
2

z − i
+

1
4 i

(z − i)2
dz .

By the Winding Number Theorem, we have∫
α

dz

z
=
[

ln |z|
]1
−1

+ 2π i η(α, 0) = ln 1− ln 1 + π i = π i ,∫
α

dz

z + i
=
[

ln |z + i|
]1
−1

+ 2π i η(−i) = ln
√

2− ln
√

2− π
2 i = −π2 i , and∫

α

dz

z − i
=
[

ln |z − i|
]

+ 2π i η(α, i) = ln
√

2− ln
√

2 + π
2 i = π

2 i ,

so we have ∫
α

dz

z(z2 + 1)2
=

∫
α

dz

z
− 1

2

∫
α

dz

z + i
− i

4

∫
α

dz

(z + i)2
− 1

2

∫
α

dz

z − i
+
i

4

∫
α

dz

(z − i)2

=
(
π i
)
− 1

2

(
− π

2 i
)
− 1

4 i
[
− 1

z + i

]1
−1
− 1

2

(
π
2 i
)

+ 1
4 i
[
− 1

z − i

]1
−1

= π i− 1
4 i
(
− 1

1+i + 1
−1+i

)
+ 1

4 i
(
− 1

1−i + 1
−1−i

)
= π i .

6: Find

∫
α

sin(πz)

z4 − 1
dz, where α(t) = 1

2 (1 + i) + 6(t2 − 1)t3 + i 4(t2 − 1)2t for −1 ≤ t ≤ 1. The loop α is shown

below.

Solution: Let f(z) =
sin(πz)

z4 + 1
. Note that f is undefined when z4 + 1 = 0, that is when z = ±1,±i. Let

α1(t) = α(t) with −1 ≤ t ≤ 0 and α2(t) = α(t) with 0 ≤ t ≤ 1, so that α1 loops clockwise around z = 1 and

α2 loops counterclockwise around z = i. Then setting F (z) =
sin(πz)

(z2 + 1)(z + 1)
and G(z) =

sin(πz)

(z + i)(z2 − 1)
we have ∫

α

f =

∫
α1

f +

∫
α2

f =

∫
α1

F (z)

z − 1
dz +

∫
α2

G(z)

z − i
dz

= 2πi
(
− F (1) +G(i)

)
= 2πi

(
0 +

sin(iπ)

(2i)(−2)

)
= −i π2 sinhπ .



7: Find

∫
α

dz

z2(z − 1)(z2 − 2z + 2)
where α(t) = sin t + 2 cos(2t) + i cos(3t) with − 3π

2 ≤ t ≤ π
6 . The path α is

shown below. It starts at the point −1 and ends at the point 3
2 .

Solution: To get
1

z2(z − 1)(z2 − 2z + 2)
=
A

z
+
B

z2
+

C

z − 1
+

Dz + E

z2 − 2z + 2

we need

A(z)(z − 1)(z2 − 2z + 2) +B(z − 1)(z2 − 2z + 2) + C(z2)(z2 − 2z + 2) + (Dz + E)(z2)(z − 1) = 1 .

Putting in x = 1 gives C = 1, and equating coefficients gives A+ C +D = 0, −3A+B − 2C −D + E = 0,
4A− 3B + 2C − E = 0, −2A+ 4B = 0, and −2B = 1. Solve these to get A = −1, B = − 1

2 , C = 1, D = 0
and E = − 1

2 , so we have

1

z2(z − 1)(z2 − 2z + 2)
= −1

z
−

1
2

z2
+

1

z − 1
−

1
2

z2 − 2z + 2
.

We can further decompose the last term. To get
− 1

2

z2 − 2z + 2
=

F

z − (1 + i)
+

G

z − (1− i)
we must have

F (z − (1− i)) +G(z − (1− i)) = − 1
2 . Put in z = 1 + i to get 2i F = − 1

2 so F = 1
4 i, and put in z = 1− i to

get −2iG = − 1
2 so G = − 1

4 i. Thus

1

z2(z − 1)(z2 − 2z + 2)
= −1

z
−

1
2

z2
+

1

z − 1
+

1
4 i

z − (1 + i)
−

1
4 i

z − (1− i)
.

From the picture of the path α, we see that η(α, 0) = 1
2 , η(α, 1) = − 3

2 , η(α, 1 + i) = 1
4 and η(α, 1− i) = − 1

4 ,
so by the Winding Number Theorem and the Fundamental Theorem of Calculus,∫

α

dz

z2(z − 1)(z2 − 2z + 2)
= −

∫
α

dz

z
− 1

2

∫
α

dz

z2
+

∫
α

dz

z − 1
+ 1

4 i

∫
α

1

z − (1 + i)
− 1

4 i

∫
α

dz

z − (1− i)

= −
(

ln 3/2
1 + 2π i

(
1
2

))
− 1

2

[
− 1

z

]3/2
−1

+
(

ln 1/2
2 + 2π i

(
− 3

2

))
+ 1

4 i
(

ln
√
5/2√
5

+ 2π i
(
1
4

))
− 1

4 i
(

ln
√
5/2√
5

+ 2π i
(
− 1

4

))
= − ln 3

2 − π i+ 5
6 + ln 1

4 − 3π i+ 1
4 i ln 2− π

8 −
1
4 i ln 1

2 −
π
8

=
(
5
6 −

π
4 − ln 6

)
− i 4π .


