

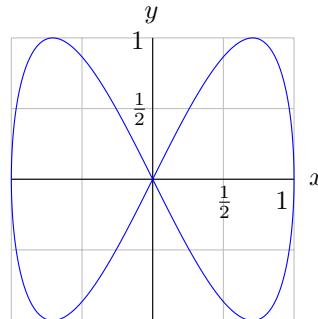
ECE 206 Advanced Calculus 2, Solutions to Assignment 1

1: Let \mathcal{C} be the parametric curve $(x, y) = f(t) = (\cos t, \sin 2t)$.

(a) Make an accurate sketch of the curve \mathcal{C} .

Solution: We make a table of values and plot points.

t	x	y
0	1	0
$\pi/6$	$\sqrt{3}/2$	$\sqrt{3}/2$
$\pi/4$	$\sqrt{2}/2$	1
$\pi/3$	1/2	$\sqrt{3}/2$
$\pi/2$	0	0
$2\pi/3$	-1/2	$-\sqrt{3}/2$
$3\pi/4$	$-\sqrt{2}/2$	-1
$5\pi/6$	$-\sqrt{3}/2$	$-\sqrt{3}/2$
π	-1	0
etc		



(b) Find an implicit equation for the tangent line to \mathcal{C} at the point where $t = \frac{\pi}{3}$.

Solution: We have $f(t) = (\cos t, \sin 2t)$ and $f'(t) = (-\sin t, 2\cos 2t)$. The required tangent line is the line through the point $f(\frac{\pi}{3}) = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ in the direction of the vector $f'(\frac{\pi}{3}) = (-\frac{\sqrt{3}}{2}, -1)$. A normal vector is given by $(1, -\frac{\sqrt{3}}{2})$, so the equation can be written as $x - \frac{\sqrt{3}}{2}y = c$. Put in the point $(x, y) = (\frac{1}{2}, \frac{\sqrt{3}}{2})$ to get $c = \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{1}{4}$. Thus the line has equation $x - \frac{\sqrt{3}}{2}y = -\frac{1}{4}$, or equivalently $4x - 2\sqrt{3}y + 1 = 0$.

(c) Find an implicit equation for \mathcal{C} .

Solution: When $x = \cos t$ and $y = \sin 2t = 2\sin t \cos t$ we have

$$x^2 = \cos^2 t, \text{ and}$$

$$y^2 = 4\sin^2 t \cos^2 t = 4(1 - \cos^2 t) \cos^2 t = 4(1 - x^2)(x^2) = 4x^2 - 4x^4.$$

Thus the curve is given implicitly by the equation $y^2 = 4x^2 - 4x^4$.

2: Let \mathcal{S} be the parametric surface $(x, y, z) = f(s, t) = \left(\frac{s}{t}, \sqrt{s+t}, st\right)$.

(a) Find the derivative matrix $Df(s, t)$.

Solution: The derivative matrix is

$$Df(s, t) = \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \\ \frac{\partial z}{\partial s} & \frac{\partial z}{\partial t} \end{pmatrix} = \begin{pmatrix} \frac{1}{t} & -\frac{s}{t^2} \\ \frac{1}{2\sqrt{s+t}} & \frac{1}{2\sqrt{s+t}} \\ t & s \end{pmatrix}.$$

(b) Find a parametric equation for the tangent plane to \mathcal{S} at the point where $(s, t) = (2, 2)$.

Solution: The tangent plane is given parametrically by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = L(s, t) = f(2, 2) + Df(2, 2) \begin{pmatrix} s-2 \\ t-2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} \\ 2 & 2 \end{pmatrix} \begin{pmatrix} s-2 \\ t-2 \end{pmatrix}$$

that is by

$$(x, y, z) = (1, 2, 4) + \left(\frac{1}{2}, \frac{1}{4}, 2\right)(s-2) + \left(-\frac{1}{2}, \frac{1}{4}, 2\right)(t-2).$$

Alternatively, by introducing new parameters u and v with $s-2 = 4u$ and $t-2 = 4v$, we have

$$(x, y, z) = (1, 2, 4) + (2, 1, 8)u + (-2, 1, 8)v.$$

(c) Find an implicit equation for the tangent plane to \mathcal{S} at the point where $(s, t) = (2, 2)$.

Solution: The plane has normal vector $(2, 1, 8) \times (-2, 1, 8) = (0, -32, 4)$. We can multiply this vector by $-\frac{1}{4}$ to get the simpler normal vector $(0, 8, -1)$, so the equation of the plane is of the form $0x + 8y - 1z = c$ for some constant c . Put in the point $(x, y, z) = (1, 2, 4)$ to get $c = 12$. Thus the tangent plane is given implicitly by $8y - z = 12$ (or explicitly $z = 8y - 12$).

3: Let \mathcal{C} be the curve of intersection of the two surfaces $z = x^2 - 2y$ and $z = 2x^2 + y^2$. Find a parametric equation for the tangent line \mathcal{L} to the curve \mathcal{C} at the point $(-1, -1, 3)$ using each of the following two methods.

(a) Find the equation of the tangent plane to each of the two surfaces at $(-1, -1, 3)$, then solve the two equations to obtain a parametric equation for \mathcal{L} .

Solution: Note that the first surface is given explicitly by $z = f(x, y) = x^2 - 2y$. We have $\frac{\partial f}{\partial x}(x, y) = 2x$ and $\frac{\partial f}{\partial y}(x, y) = -2$. The equation of the tangent plane is

$$z = f(-1, -1) + \frac{\partial f}{\partial x}(-1, -1)(x + 1) + \frac{\partial f}{\partial y}(-1, -1)(y + 1) = 3 - 2(x + 1) - 2(y + 1) = -2x - 2y - 1.$$

The second surface is given explicitly by $z = g(x, y) = 2x^2 + y^2$. We have $\frac{\partial g}{\partial x} = 4x$ and $\frac{\partial g}{\partial y} = 2y$ so the equation of the tangent plane is

$$z = g(-1, -1) + \frac{\partial g}{\partial x}(-1, -1)(x + 1) + \frac{\partial g}{\partial y}(-1, -1)(y + 1) = 3 - 4(x + 1) - 2(y + 1) = -4x - 2y - 3.$$

The equations of the two planes can be written as $2x + 2y + z = -1$ and $4x + 2y + z = -3$. We solve these two equations using Gauss-Jordan elimination. We have

$$\left(\begin{array}{ccc|c} 2 & 2 & 1 & -1 \\ 4 & 2 & 1 & -3 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 1 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 2 & 1 & 1 \end{array} \right) \sim \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{array} \right)$$

so the solution is

$$(x, y, z) = \left(-1, \frac{1}{2}, 0 \right) + \left(0, -\frac{1}{2}, 1 \right) t.$$

(b) Find a parametric equation for \mathcal{C} , then use this parametric equation to find a parametric equation for the tangent line \mathcal{L} .

Solution: For any point (x, y, z) which lies in the intersection, we must have $z = x^2 - 2y$ and $z = 2x^2 + y^2$, and so $x^2 - 2y = 2x^2 + y^2$, that is $x^2 + y^2 + 2y = 0$. Complete the square to rewrite this as $x^2 + (y + 1)^2 = 1$, and we see that (x, y) lies on the circle centered at $(0, -1)$ of radius 1. This circle is given parametrically by $(x, y) = (\cos t, \sin t - 1)$. Put $x = \cos t$ and $y = \sin t - 1$ back into the equation $z = x^2 - 2y$ to get $z = \cos^2 t - 2 \sin t + 2$. Thus the curve of intersection is given parametrically by

$$(x, y, z) = (\cos t, \sin t - 1, \cos^2 t - 2 \sin t + 2).$$

The tangent vector at each point is given by $(x', y', z') = (-\sin t, \cos t, -2 \sin t \cos t - 2 \cos t)$. Notice that when $t = \pi$ we have $(x, y, z) = (-1, -1, 3)$ and $(x', y', z') = (0, -1, 2)$, so the tangent line at the point $(x, y, z) = (-1, -1, 3)$ is given parametrically by

$$(x, y, z) = (-1, -1, 3) + (0, -1, 2) t.$$

4: (a) Let \mathcal{P} be the tangent plane to the surface given by $z = 4x^2 - 8xy + 5y^2$ at the point where $(x, y) = (2, 1)$. Find the line of intersection of \mathcal{P} with the xy -plane.

Solution: The surface is given explicitly by $z = f(x, y) = 4x^2 - 8xy + 5y^2$. We have $\frac{\partial f}{\partial x} = 8x - 8y$ and $\frac{\partial f}{\partial y} = -8x + 10y$, so the equation of the tangent plane \mathcal{P} is

$$z = f(2, 1) + \frac{\partial f}{\partial x}(2, 1)(x - 2) + \frac{\partial f}{\partial y}(2, 1)(y - 1) = 5 + 8(x - 2) - 6(y - 1) = 8x - 6y - 5.$$

To find the intersection of this plane with the xy -plane, put in $z = 0$ to get $8x - 6y = 5$.

(b) Find the equation of the tangent plane to the surface given by $e^{x+z} = \sqrt{x^2y + z}$ at the point $(1, 2, -1)$.

Solution: The surface is given implicitly by $g(x, y, z) = 0$ where $g(x, y, z) = e^{x+z} - \sqrt{x^2y + z}$. We have

$$\frac{\partial g}{\partial x} = e^{x+z} - \frac{xy}{\sqrt{x^2y + z}}, \quad \frac{\partial g}{\partial y} = -\frac{x^2}{2\sqrt{x^2y + z}} \quad \text{and} \quad \frac{\partial g}{\partial z} = e^{x+z} - \frac{1}{2\sqrt{x^2y + z}}$$

so that

$$\frac{\partial g}{\partial x}(1, 2, -1) = e^0 - \frac{2}{\sqrt{1}} = -1, \quad \frac{\partial g}{\partial y}(1, 2, -1) = -\frac{1}{2\sqrt{1}} = -\frac{1}{2} \quad \text{and} \quad \frac{\partial g}{\partial z}(1, 2, -1) = e^0 - \frac{1}{2\sqrt{1}} = \frac{1}{2}.$$

Thus the equation of the tangent plane is

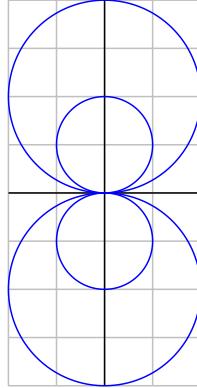
$$0 = \frac{\partial g}{\partial x}(1, 2, -1)(x - 1) + \frac{\partial g}{\partial y}(1, 2, -1)(y - 2) + \frac{\partial g}{\partial z}(1, 2, -1)(z + 1) = -(x - 1) - \frac{1}{2}(y - 2) + \frac{1}{2}(z + 1).$$

Multiply both sides by -2 to get $0 = 2(x - 1) + (y - 2) + (z + 1) = 2x + y - z - 5$. Thus the tangent plane is given implicitly by $2x + y - z = 5$ (or explicitly by $z = 2x + y - 5$).

5: Let \mathcal{S} be the surface $2yz = x^2 + y^2$.

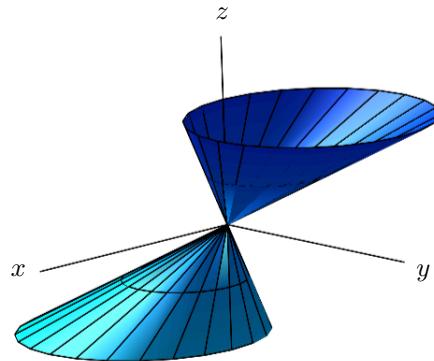
(a) Sketch the level sets $z = -2, -1, 0, 1, 2$ for the surface \mathcal{S} (in other words, sketch the curve of intersection of \mathcal{S} with the each of the planes $z = -2, -1, 0, 1, 2$).

Solution: The level set $z = -2$ is the curve $x^2 + y^2 = -4z$, that is $x^2 + y^2 + 4z = 0$ or, by completing the square, $x^2 + (y+2)^2 = 4$, so it is the circle centered at $(0, -2)$ of radius 2. In general, the level curve $z = c$ is the curve $x^2 + y^2 - 2cy = 0$ or $x^2 + (y-c)^2 = c^2$, which is the circle centered at $(0, c)$ of radius $|c|$. When $c = 0$, the level set consists only of the origin. The level sets are shown below.



(b) Sketch the surface \mathcal{S} .

Solution: To sketch the surface, we draw each of the level sets $z = c$ at height c . It also helps to find the level sets $x = 0$ and $y = 0$. When $x = 0$ (that is in the yz -plane) we get the curve $2yz = y^2$, that is $y^2 - 2yz = 0$ or $y(y-2z) = 0$, which is the union of the two lines $y = 0$ and $y = 2z$ in the yz -plane. When $y = 0$ (that is in the xz -plane) we get $x^2 = 0$, that is the line $x = 0$ in the xz -plane.



(c) Find the equation of the tangent plane to \mathcal{S} at the point $(3, 1, 5)$.

Solution: Note that \mathcal{S} is given implicitly by $g(x, y, z) = 0$ where $g(x, y, z) = x^2 + y^2 - 2yz$ and that we have $g(3, 1, 5) = 0$. We have $Dg = \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right) = (2x, 2y - 2z, -2y)$ so that $Dg(3, 1, 5) = (6, -4, -2)$. The equation of the tangent plane is

$$0 = Dg(3, 1, 5) \begin{pmatrix} x - 3 \\ y - 1 \\ z - 5 \end{pmatrix} = 6(x - 3) - 4(y - 1) - 2(z - 5) = 6x - 4y - 2z - 4.$$

We can also write the equation explicitly as $z = 3x - 2y - 2$.

6: The position of a fly at time t is given by $(x, y, z) = (t, t^2, 1 + t^3)$. A light shines down on the fly from the point $(0, 0, 3)$ and casts a shadow on the xy -plane. Find the position and the velocity of the shadow at time $t = 1$.

Solution: When the fly is at the point (x, y, z) , with $z < 3$, let us find a formula for the position $(u, v, 0)$ of the shadow. The line from the light at $(0, 0, 3)$ to the fly at (x, y, z) has parametric equation

$$(u, v, w) = (0, 0, 3) + s((x, y, z) - (0, 0, 3)) = (sx, sy, 3 + s(z - 3)).$$

The shadow is at the point where this line touches the xy -plane, that is the point where $w = 0$. To get $w = 0$, we need $3 + s(z - 3) = 0$, and so $s = \frac{3}{3 - z}$, and then $u = sx = \frac{3x}{3 - z}$ and $v = st = \frac{3y}{3 - z}$. This shows that when the fly is at the point $(x, y, z) = (t, t^2, 1 + t^3)$, the shadow is at the point

$$(u, v) = (u(t), v(t)) = \left(\frac{3x}{3 - z}, \frac{3y}{3 - z} \right) = \left(\frac{3t}{2 - t^3}, \frac{3t^2}{2 - t^3} \right)$$

and its velocity is

$$(u'(t), v'(t)) = \left(\frac{(3)(2 - t^3) - (3t)(-3t^2)}{(2 - t^3)^2}, \frac{(6t)(2 - t^3) - (3t^2)(-3t^2)}{(2 - t^3)^2} \right) = \left(\frac{6 + 6t^3}{(2 - t^3)^2}, \frac{12t + 3t^4}{(2 - t^3)^2} \right).$$

In particular, we have $(u(1), v(1)) = (3, 3)$ and $(u'(1), v'(1)) = (12, 15)$.