

1: Sketch the image under $f(z) = 10/z$ of the triangle with vertices $2 + i$, $4 + 2i$ and $1 + 3i$.

2: (a) Evaluate $\tanh(\ln 2 + i \frac{\pi}{4})$.

(b) Solve $\tanh z = \tanh i z$.

3: (a) Show that $\cos^{-1} z = -i \log(z \pm \sqrt{z^2 - 1})$, where both sides are multifunctions.

(b) Solve $\cos z = \frac{1}{4}(3 + i)$.

4: (a) Sketch the image under $f(z) = z^2$ of the circle $z(t) = (2 \cos t) e^{it}$.

(b) Sketch the image under $f(z) = z^3$ of the line $z(t) = t + i$.

5: Sketch the image under $f(z) = \tanh z$ of the line $z(t) = t + \frac{3\pi}{8}i$.

6: (a) For $0 \neq a \in \mathbf{C} = \mathbf{R}^2$ and $0 \neq r \in \mathbf{R}$, show that the circle with diameter a, ta has equation $|z|^2 - (1+t)z \cdot a + t|a|^2$.

(b) For $0 \neq a \in \mathbf{Z}$ and $0 \neq t \in \mathbf{R}$, show that the image under the map $w = f(z) = \frac{1}{z}$ of the circle with diameter a, ta is the circle with diameter $\frac{1}{ta}, \frac{1}{a}$.