

1: Let $F(x, y) = (P(x, y), Q(x, y)) = (x - y, x + y)$.

(a) Sketch the vector field $\frac{1}{4}F$, along with some of its flow lines.

(b) Verify directly that $\int_C F \cdot T \, dL = \int_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA$ when $D = \{(x, y) | x^2 + y^2 \leq 1\}$ and C is the circle given by $(x, y) = (\cos t, \sin t)$.

2: Find the work done by the force $F(x, y, z) = (2x + yz, 2y + xz, 2z + xy)$ acting on an object which moves along the curve $(x, y, z) = \alpha(t) = \left(\frac{2+t^2}{1+t}, \frac{2+t^3}{1+t^2}, \frac{2+t^4}{1+t^3} \right)$ with $0 \leq t \leq 2$.

3: Find the flux of the vector field $F(x, y, z) = (x^2 + \sqrt{yz}, y + x\sqrt{z}, z + x\sqrt{y})$ across the boundary surface of the region $D = \{(x, y, z) | x^2 \leq z \leq 2 - x^2, 0 \leq y \leq z\}$.

4: Find the work done by the force $F = (y^2 z, x + z, x^2 + yz)$ acting on an object which moves counterclockwise (when looking down from above) once around the boundary of the surface $S = \{(x, y, z) | 0 \leq x \leq 1, 1 - x \leq y \leq 1 + x, z = x^2\}$.

5: Find the flux of the vector field $F(x, y, z) = (xz, -yz, 1 + y^2)$ across the surface S given by $S = \{(x, y, z) | z = \cos^{-1}(x^2 + y^2), x^2 + y^2 \leq 1\}$ with outwards pointing normal vector.

6: Let $F(x, y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right)$.

(a) Show that when C is the curve given by $(x, y) = \alpha(t) = (r(t) \cos \theta(t), r(t) \sin \theta(t))$ for $a \leq t \leq b$, where $r(t)$ and $\theta(t)$ are smooth with $r(t) > 0$, we have $\int_C F \cdot T \, dL = \theta(b) - \theta(a)$.

(b) Find $\int_C F \cdot T \, dL$ when C is given by $(x, y) = \alpha(t) = (3 - t^2, t)$ for $1 \leq t \leq 2$.