

1: A cord, carrying an unevenly distributed charge, is wound around the cone $z = \sqrt{x^2 + y^2}$ following the curve $(x, y, z) = \alpha(t) = (t \cos t, t \sin t, t)$ with $0 \leq t \leq 4$. The charge density (charge per unit length) of the cord at position (x, y, z) is given by $f(x, y, z) = z$. Find the total charge of the cord.

2: A long evenly charged wire lies along the z -axis. The electric field in the region surrounding the wire is given by $E = 2kq \left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}, 0 \right)$, where q is the charge density (charge per unit length) of the wire and k is a constant (which depends on the units used). A small object of unit charge moves along the curve $(x, y, z) = \alpha(t) = (1-t, 2t, 1+3t)$ for $0 \leq t \leq 1$. Find the work done by the electric field on the object.

3: A gas expands and rotates with velocity field $V(x, y, z) = (x - y, x + y, z)$. Find the rate (volume per unit time) at which the gas passes through the triangle with vertices at $(1, 0, -1)$, $(1, 3, 2)$ and $(0, 1, 2)$.

4: Let $F(x, y) = (x, 2y)$.

- Make an accurate sketch of the vector field $\frac{1}{4}F$.
- Find the equations of the flow lines of F .

5: The surface obtained by revolving the circle $(x - 1)^2 + z^2 = 1$ in the xz -plane about the z -axis can be given parametrically by

$$(x, y, z) = \sigma(\theta, \phi) = \left((1 + \cos \phi) \cos \theta, (1 + \cos \phi) \sin \theta, \sin \phi \right).$$

with $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq 2\pi$. Find the mass of this surface given that its density (mass per unit area) at position (x, y, z) is given by $f(x, y, z) = 1 + z^2$.

6: Let $F(x, y, z) = (xz, yz, x^2 + y^2)$. Find the flux of F across the boundary surface of the solid given by $x^2 + y^2 \leq z \leq 1$.