

- 1:** Find the volume of the region which lies under the surface $z = e^{x+y}$ and above the triangle in the xy -plane with vertices at $(0, 0)$, $(1, 1)$ and $(0, 2)$.
- 2:** A flat plate is in the shape of the region D bounded by $x + y = -1$ and $x + y^2 = 1$. The charge density (charge per unit area) of the plate at position (x, y) is given by $f(x, y) = xy$. Find the total charge of the plate.
- 3:** Find the mass of the solid tetrahedron with vertices at $(0, 0, 0)$, $(1, 0, 0)$, $(0, 1, 0)$ and $(0, 0, 1)$ with density given by $f(x, y, z) = 1/(1+x)$.
- 4:** Find $\int_D x^2 + y \, dV$ where D is the tetrahedron bounded by $x + y + z = 2$, $z = 2$, $x = 1$ and $y = x$.
- 5:** Use the change of coordinates map $(x, y) = g(u, v) = (1 + 2u + v, 1 + u + 3v)$ to find $\int_D e^{x-y} \, dx \, dy$ where D is the parallelogram with vertices at $(1, 1)$, $(3, 2)$, $(4, 5)$ and $(2, 4)$.
- 6:** Use polar coordinates to find the volume of the region which lies outside the cylinder $x^2 + y^2 = 1$, inside the cylinder $x^2 + y^2 = 2x$ and inside the sphere $x^2 + y^2 + z^2 = 4$.
- 7:** Use spherical coordinates to find the mass of the solid in the shape of the region D given by $z \geq \sqrt{x^2 + y^2}$ and $x^2 + y^2 + z^2 \leq 4$ with density given by $f(x, y, z) = 2 - z$.