

1: Let $f(z) = \frac{1}{z^2 - 2z - 3}$.

- (a) Find the Taylor series for $f(z)$ centred at 0.
- (b) Find the Taylor series for $f(z)$ centred at 1.
- (c) Find the radius of convergence of the Taylor series for $f(z)$ centred at $2i$.

2: Let $f(z) = \frac{1}{z^2 - 2z - 3}$.

- (a) Find the Laurent series for $f(z)$ in $D^*(-1, 4) = \{z \in \mathbf{C} \mid 0 < |z + 1| < 4\}$.
- (b) Find the Laurent series for $f(z)$ in $D^*(3, 4) = \{z \in \mathbf{C} \mid 0 < |z - 3| < 4\}$.
- (c) Find the Laurent series for $f(z)$ in the annulus $A = \{z \in \mathbf{C} \mid 2 < |z - 1| < \infty\}$.

3: For each of the following functions $f(z)$, find $\int_{\alpha} f(z) dz$ where $\alpha(t) = e^{it}$ for $0 \leq t \leq 2\pi$.

(a) $f(z) = \frac{\coth z}{z^2}$

(b) $f(z) = \frac{1+z}{e^z - (1+z)}$

(c) $f(z) = z^4 \sin(2/z)$.

4: Find $\int_{\alpha} \frac{1}{(e^z + 1)^2} dz$ where $\alpha(t) = 3i + e^{it}$ for $0 \leq t \leq 2\pi$.

5: Find $\int_{\alpha} \frac{1+z}{1 - \cos z} dz$ where $\alpha(t) = 4 + 5e^{it}$ for $0 \leq t \leq 2\pi$.

6: Find $\int_{\alpha} \frac{\tan z}{z^6} dz$ where $\alpha(t) = 1 + 2e^{it}$ for $0 \leq t \leq 2\pi$.