

1: Find $\int_0^{2\pi} \frac{dt}{(5 + 3 \cos t)^2}$.

2: Find $\int_0^\infty \frac{x^2 dx}{x^4 + x^2 + 1}$.

3: Find $\int_0^\infty \frac{x \sin x}{x^4 + 4} dx$.

4: Find $\int_0^\infty \left(\frac{\ln x}{1 + x^2} \right)^2 dx$.

5: For a function $f(x)$ with $x \in \mathbf{R}$, the **Fourier transform** of $f(x)$ is defined to be the function $F(\omega) = \mathcal{F}(f)(\omega)$ defined for $s \in \mathbf{R}$ by

$$F(\omega) = \mathcal{F}(f)(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx.$$

Given $F(\omega)$ the function $f(x)$ can be recovered using the inverse transform

$$f(x) = \mathcal{F}^{-1}(F)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega.$$

Find the Fourier transform of $f(x) = \frac{1}{1 + x^2}$.

6: For a function $f(t)$ defined for $0 < t \in \mathbf{R}$, the **Laplace transform** of $f(t)$ is the function $F(s) = \mathcal{L}(f)(s)$ defined for all s in a set of the form $\{s \in \mathbf{C} \mid \operatorname{Re}(s) > c\}$ for some $c \in \mathbf{R}$, by

$$F(s) = \mathcal{L}(f)(s) = \int_0^{\infty} f(t) e^{-st} dt.$$

Given $F(s)$ the function $f(t)$ can be recovered using the inverse transform

$$f(t) = \mathcal{L}^{-1}(F)(t) = \frac{1}{2\pi i} \lim_{R \rightarrow \infty} \int_{\lambda_{a,R}} e^{st} F(s) ds,$$

where $a > c$ and $\lambda_{a,R}(u) = a + iu$ for $-R \leq u \leq R$.

Find the inverse Laplace transform of $F(s) = \frac{2s + 3}{s^2 + 4}$ defined for $s \in \mathbf{C}$ with $\operatorname{Re}(s) > 0$.