

1: Let \mathcal{C} be the parametric curve $(x, y) = f(t) = (\cos t, \sin 2t)$.

- (a) Make an accurate sketch of the curve \mathcal{C} .
- (b) Find an implicit equation for the tangent line to \mathcal{C} at the point where $t = \frac{\pi}{3}$.
- (c) Find an implicit equation for \mathcal{C} .

2: Let \mathcal{S} be the parametric surface $(x, y, z) = f(s, t) = \left(\frac{s}{t}, \sqrt{s+t}, st\right)$.

- (a) Find the derivative matrix $Df(s, t)$.
- (b) Find a parametric equation for the tangent plane to \mathcal{S} at the point where $(s, t) = (2, 2)$.
- (c) Find an implicit equation for the tangent plane to \mathcal{S} at the point where $(s, t) = (2, 2)$.

3: Let \mathcal{C} be the curve of intersection of the two surfaces $z = x^2 - 2y$ and $z = 2x^2 + y^2$. Find a parametric equation for the tangent line \mathcal{L} to the curve \mathcal{C} at the point $(-1, -1, 3)$ using each of the following two methods.

- (a) Find the equation of the tangent plane to each of the two surfaces at $(-1, -1, 3)$, then solve the two equations to obtain a parametric equation for \mathcal{L} .
- (b) Find a parametric equation for \mathcal{C} , then use this parametric equation to find a parametric equation for the tangent line \mathcal{L} .

4: (a) Let \mathcal{P} be the tangent plane to the surface given by $z = 4x^2 - 8xy + 5y^2$ at the point where $(x, y) = (2, 1)$. Find the line of intersection of \mathcal{P} with the xy -plane.

- (b) Find the equation of the tangent plane to the surface given by $e^{x+z} = \sqrt{x^2y + z}$ at the point $(1, 2, -1)$.

5: Let \mathcal{S} be the surface $2yz = x^2 + y^2$.

- (a) Sketch the level sets $z = -2, -1, 0, 1, 2$ for the surface \mathcal{S} (in other words, sketch the curve of intersection of \mathcal{S} with the each of the planes $z = -2, -1, 0, 1, 2$).
- (b) Sketch the surface \mathcal{S} .
- (c) Find the equation of the tangent plane to \mathcal{S} at the point $(3, 1, 5)$.

6: The position of a fly at time t is given by $(x, y, z) = (t, t^2, 1 + t^3)$. A light shines down on the fly from the point $(0, 0, 3)$ and casts a shadow on the xy -plane. Find the position and the velocity of the shadow at time $t = 1$.