
Solutions to the Problems Using Invariants or Monovariants

1: Show that if 25 people play in a ping pong tournament then, at the end of the tournament,
the number of people who played an even number of games is odd.

Solution: Each game involves two people. If ni is the number of games played by the ith

player and n is the total number of games played, then we have n1 + n2 + · · ·+ n25 = 2n.
Since the sum n1+n2+· · ·+n25 is even, an even number of the numbers ni must be odd and
so an odd number of the ni will be even. (The invariant is the parity of n1+n2+ · · ·+n25).

2: Show that in a house with 25 rooms, if every room has an odd number of doors then there
must be an odd number of doors along the outside wall of the house.

Solution: We suppose that only doors between two rooms and doors along the outside wall
are being counted (so for example, closet doors do not count). If we treat the exterior of
the house as a room, then each door connects two rooms. For i = 1, 2, · · · , 25 let ni be the
number of doors in the ith room, let n0 be the number of doors along the outside wall,
and let n be the total number of doors in the house. Then n0 +n1 + · · ·+n25 = 2n, which
is even, and so an even number of the 26 numbers ni must be odd. Since the 25 numbers
n1, n2, · · · , n25 are all odd, the last number n0 must also be odd.

3: Find the minimum number of breaks required to break an m×n bar of chocolate into 1×1
squares.

Solution: Each break increases the number of pieces by one. We start with one piece and
we end with mn pieces and so mn − 1 breaks are required. (The invariant here is the
number of pieces minus the number of breaks).

4: We begin with the numbers 1, 2, 3, · · · , 50 written on the blackboard. At each step we can
erase any two of the numbers a and b and then write down the number |a−b|. We continue
until one number remains. Determine whether this final number could be equal to 10.

Solution: The invariant we use is the parity of the sum of all the numbers on the board.
Replacing two numbers a and b by the number |a − b| does not change the parity of the
sum of the numbers. Since 1 + 2 + · · · + 50 is odd, the final number remaining must be
odd.

5: Let A be a matrix with integral entries. Show that there exist diagonal matrices B and C
whose diagonal entries are all ±1 such that in the matrix BAC the sum of the entries in
each row and in each column is non-negative.

Solution: Multiplying on the left by matrix B is equivalent to multiplying several columns
by −1, and multiplying on the right by R is equivalent to multiplying several rows by −1.
Perform the following algorithm on the matrix A. If the matrix has a row or a column
whose sum is negative, choose such a row or column and multiply it by −1. Repeat this
operation indefinitely. Notice that at each step the sum of all the entries in the resulting
matrix will increase, and this sum is always bounded by the sum of the absolute values
of all the entries in the original matrix A. So after finitely many steps we will obtain a
matrix with no rows or columns whose sum is negative. (Here, the sum of the entries in
the matrix is a monovariant, that is a quantity which increases under an operation).



6: Determine whether it is possible to tile a 10× 10 square floor using 1× 4 rectangular tiles.

Solution: It is not possible. To see this, divide the floor into one hundred 1 × 1 squares,
then assign an element of Z4 to each of these squares as follows: the square in the ith row
and jth column is assigned the element i+j ∈ Z4. Notice that when a 1×4 tile is placed in
any position, it will always cover 4 squares which have been assigned 4 different elements
of Z4. To cover the entire floor, we would need 25 tiles, so each of the 4 elements of Z4

would need to be assigned to exactly 25 of the 100 squares. But 1 ∈ Z4 is only assigned to
24 of the squares while 3 ∈ Z4 is assigned to 26 of the squares. (Alternatively, this follows
easily from problem 7).

7: We try to tile a k × l rectangular floor using some 2 × 2 square tiles and some 1 × 4
rectangular tiles. Show that if it is possible to tile the floor using m of the square tiles
and n of the rectangular tiles, then it is not possible to tile the floor using (m + 1) of the
square tiles and (n− 1) of the rectangular tiles.

Solution: Divide the floor into 1 × 1 squares. Label each square by an element of Z2 as
follows: the (i, j)th square is labeled by 1 if i and j are both even and by 0 otherwise.
Notice that when a 2× 2 tile is placed in any position, it covers exactly one square labeled
by 1, and when a 1 × 4 tile is placed in any position it covers either zero or two squares
labeled by 1. Thus the sum in Z2 of all the labels of all the 1 × 1 squares covered by m
square tiles and n rectangular tiles is m + 2n, while for (m + 1) square tiles and (n − 1)
rectangular tiles, the sum is (m + 1) + 2(n− 1) = m + 2n− 1.

8: Show that when a 6 × 6 square floor is tiled using 1 × 2 rectangular tiles, there is always
a straight line which crosses the floor without cutting through any of the tiles.

Solution: There are 10 lines which could possibly cross through the square without cutting
any tiles (5 horizontal lines and 5 vertical lines). Notice that each line must cut through
an even number of tiles, since if it cut through an odd number of tiles then, excluding
those tiles, the area of the remaining portion of the floor on each side of the line would be
odd and could not be tiled by 1× 2 tiles. Suppose, for a contradiction, that each of the 10
lines crosses a tile. Then (since each line crosses an even number of tiles), each of the 10
lines crosses at least 2 tiles and so (since each tile is crossed by a unique line) there are at
least 20 tiles. But the floor is 6× 6 so there are only 18 tiles.

9: Initially, 9 of the 100 squares in a 10×10 grid are infected. During each unit time interval,
each square which has 2 or more infected neighbours (a neighbour being a square which
shares an edge) also becomes infected. Determine whether it is possible that all 100 squares
will eventually become infected.

Solution: It is not possible. Consider the perimeter of the union of all of the infected
squares. It is not hard to check (with a few pictures) that when a square with two infected
neighbours becomes infected this perimeter remains constant, when a square with 3 infected
neighbours becomes infected this perimeter decreases by 2, and when a square with 4
infected neighbours becomes infected this perimeter decreases by 4. Thus the perimeter
never increases. The perimeter of the union of the initial 9 infected squares is at most 36,
but the perimeter of the entire 10× 10 grid is 40. (The perimeter is a monovariant).



10: Initially, 4 chips are placed at the point (0, 0). At each step we can remove one chip from
some point (a, b) and replace it with 2 chips, one at the point (a + 1, b) and the other at
(a, b + 1). Show that, after finitely many steps, there will always be some point with at
least two chips sitting on it.

Solution: We assign a weight to each chip as follows: a chip at the point (a, b) is assigned
the weight 1

2a+b . We consider the sum of the weights of all the chips. Notice that two chips,

one at (a + 1, b) and the other at (a, b + 1) have combined weight 1
2a+1+b + 1

2a+b+1 = 1
2a+b ,

so the sum of the weights of the chips is invariant. Initially, the sum of the weights is 4,
so the sum will always be equal to 4 after each step.

If we had infinitely many chips with one at every point in the non-negative quadrant
(that is at each point (a, b) with a ≥ 0 and b ≥ 0), then the sum of the weights would

be
∞∑
a=0

∞∑
b=0

1
2a+b =

∞∑
a=0

1
2a

∞∑
b=1

1
2b

= 2 · 2 = 4. After finitely many steps we will have finitely

many chips in the non-negative quadrant. If all these chips were at distinct points, then
the sum of the weights would be less than 4. Thus there will always be some point with
two chips.



Solutions to the Problems Using the Extremal Method

1: Show that every polyhedron has at least two faces with the same number of edges.

Solution: Choose a face with a maximal number of edges, say it has n edges. Then it has n
neighbouring faces each of which has between 3 and n edges. By the pigeonhole principle,
some two of these n neighbours must have the same number of edges.

2: There are 2n distinct points in the plane, no three collinear. Half of them are colored blue
and the other half are colored red. Show that it is possible to pair each blue dot with a
red dot in such a way that no two of the n line segments between pairs intersect.

Solution: Of all the ways of pairing the blue points with the red points, choose a way
which minimizes the sum of the lengths of the segments between pairs. Suppose that two
of the line segments between pairs had a point of intersection, say the segment from the
blue point b1 to the red point r1 intersected with the segment from the blue point b2 to
the red point r2 intersected. Then by replacing the pairs (b1, r1) and (b2, r2) by the pairs
(b1, r2) and (b2, r1), we would obtain a new pairing with a smaller sum of segment lengths.

3: Show that the equation x2 + y2 = 3(z2 + w2) has no non-zero solution (x, y, z, w) ∈ Z4.

Solution: Suppose that the given equation did have a non-zero solution. Of all the non-
zero solutions, choose one which minimizes the value of x2 +y2, say we choose the solution
(a, b, c, d). So a2 +b2 = 3(c2 +d2) and a2 +b2 is as small as possible. Since a2 +b2 = 0 mod
3, we must have a = b = 0 mod 3, say a = 3p and b = 3q. Then 9p2 + 9q2 = 3(z2 +w2) so
z2 + w2 = 3(a2 + b2) = 0 mod 3, and so z = w = 0 mod 3, say z = 3r and w = 3s. But
then (p, q, r, s) is also a non-zero solution to the given equation and p2 + q2 < a2 + b2.

4: There are n > 3 lines in the plane, no two of which are parallel and no three of which meet

at a point. Show that the lines cut the plane into n2+n+2
2 regions, at least 2n−2

3 of which
are triangles.

Solution: Rotate the plane if necessary so that none of the n lines are horizontal. Then all
of the regions which are bounded below will have a unique lowest point, and each of the(
n
2

)
points of intersection of the n lines will be the lowest point of a uniquely determined

region. Thus there are
(
n
2

)
regions which are bounded below. To count the regions which

are not bounded below, imagine a horizontal line which lies below all of the
(
n
2

)
intersection

points of the given lines; this line intersects each of the n given lines and we see that there
are n + 1 regions which are not bounded below (these regions cut our imagined line into
n + 1 parts at the n points of intersection with the given lines). Thus the total number of

regions is
(
n
2

)
+ n + 1 = n2+n+2

2 .



Now, let us count the triangular regions. Let r be any one of the n lines. Note that r
must have some intersection points on one (or both) sides. Choose one side of r in which
there are some intersection points, and choose an intersection point p which is nearest to
r. Say p is the point of intersection of lines s and t. The lines r, s and t form a triangle.
None of the other lines could cut through this triangle, since if they did then there would
be another intersection point nearer to r than p. Thus the line r is adjacent to a triangular
region which lies on the same side of r as p. If the line r has some intersection points on
both sides of it, then it will be adjacent to two triangular regions, one on each side. Finally,
we note that there are at most two lines which do not have some intersection points on
both sides: indeed, if there were 3 such lines, then they would form a triangle surrounding
all of the intersection points, but this is not possible since any other line would necessarily
intersect one of the 3 lines at some point outside the triangle. To summarize, all lines but
2 each form an edge of at least two triangular regions, the other two lines each form an
edge of at least 1 triangular region, and each triangle has 3 edges, so the total number of

triangular regions is at least (n−2)·2+2·1
3 = 2n−2

3 .

5: Find the smallest number of chips which can be placed in the squares of an n× n grid in
such a way that for each (i, j) such that there is no chip in the (i, j)th square, the total
number of chips in the ith row together with the jth column is at least equal to n.

Solution: We claim that the smallest number of chips is
⌊
n2+1

2

⌋
Suppose that chips have

been placed in the n × n grid in accordance with the given requirements. From amongst
all of the rows and columns, choose one with the smallest number of chips, let us say that
it happens to be a row, and let k be the number of chips on this row. In our chosen row,
there are k squares with a chip and n − k squares with no chip. Each of the k columns
through a square with a chip has at least k chips (by our choice of the row), and each
of the n − k columns through a square with no chip has at least n − k chips (by the
requirement in the statement of the problem), and so the total number of chips is at least

k2 + (n − k)2 = n2

2 + (n−2k)2
2 ≥

⌊
n2+1

2

⌋
. Note that we can use exactly

⌊
n2+1

2

⌋
chips by

placing the chips in a checkerboard pattern.

6: An odd number of people stand in a room and each person has one ball. Each person
tosses the ball to their nearest neighbour. Show that somebody ends up without a ball.

Solution: We shall suppose that there are at least 3 people and that each person has a
unique nearest neighbour. When the number of people is equal to 3, the two people who
are nearest will exchange balls, and the third person will throw his ball to one of those
two and end up without a ball. Suppose, inductively, that when there are 2n− 1 people in
the room, somebody will end up without a ball. Now suppose that there are 2n+ 1 people
in the room. Consider the pair of people who are nearest together. They will throw their
balls to each other. If a third person throws their ball to one of this pair, then one of the
pair will end up with two balls so someone else must end up with no ball. If no one else
throws their ball to either member of this pair, then we can isolate this pair and then we
are left with 2n− 1 people in the room. By the induction hypothesis, someone will end up
without a ball.



7: In a ping pong tournament, each player plays every other player exactly once. Show that
there is some player in the unfortunate position that every other player either beat him or
beat someone who did.

Solution: Choose a player, say A, who lost the most games. We claim that A is in the
above-described unfortunate position. Indeed, if A was not in that unfortunate position,
then there would be a player B who neither beat A nor beat anyone who beat A, but then
B would have lost more games than A.

8: Two players start with several piles of chips and they take turns. At each turn the player
whose turn it is divides every pile with more than one chip into two smaller piles. The
player who makes the last such division, leaving a single chip in each pile, is the winner.
Describe the initial situation for which the first player will win, and describe the winning
strategy.

Solution: When a pile with 2n − 1 chips is split into two piles, the larger of the two will
have m chips with 2n−1 − 1 < m < 2n − 1, so it will not have 2k − 1 chips for any k. On
the other hand, a pile containing m chips with 2n−1− 1 < m < 2n− 1 can be divided into
two piles in such a way that the larger of the two has 2n−1− 1 chips. Thus the first player
will win provided that the largest pile does not contain 2n − 1 chips for any n, and the
wining strategy is to split the piles so that the largest pile does have 2n− 1 chips for some
n.

9: Let S be a finite set of 3 or more points in the plane with the property that any three
points in S can be covered by a triangle of area 1. Show that the entire set S can be
covered by a triangle of area 4.

Solution: Choose 3 of the points, say a, b and c, which make a triangle of maximum area.
Let d, e and f be the points such that a is the midpoint of ef , b is the midpoint of df and
c is the midpoint of ab. We claim that all of the given points lie in (or on) the triangle
def . Suppose that some point p lies outside of def . Say it lies on the other side of the line
de than the point f . But then the area of abp is greater than the area of abc.

10: A finite number of polygons lie in the plane. Each pair of polygons has a point of inter-
section. Show that there is a line which intersects every polygon.

Solution: Say there are n polygons, P1, P2, · · · , Pn. For j = 1, 2, · · · , n let Ij = [aj , bj ] be
the closed interval obtained by projecting Pj onto the x-axis. Note that each intersection
Ij ∩ Ik is non-empty, since each intersection Pj ∩Pk is non-empty. Let ak be the maximum
of all the left endpoints ai, and let bl be the minimum of all the right endpoints bi. Note
that ak ≤ bl since Ik ∩ Il 6= ∅, so for all j we have aj ≤ ak ≤ bl ≤ bj , and so ak lies in every
interval Ij . Thus the line x = ak intersects every polygon.


