
CO 250 Intro to Optimization, Midterm Solutions, Winter 2013

[5] 1: Maximize and minimize z = c0 + cTx for x ∈ R5 subject to Ax = b and x ≥ 0, where

c0 = −5 , c =
(
1, 2, 0, 3, 1

)T
, A =

 1 0 1 −1 −2
2 1 2 −1 −3
2 −1 1 −4 −2

 , b =

−1
3
−4

 .

Solution: We solve Ax = b. We have

(
A
∣∣b) =

 1 0 1 −1 −2
2 1 2 −1 −3
2 −1 1 −4 −2

∣∣∣∣∣∣
−1

3
−4

 ∼
 1 0 1 −1 −2

0 1 0 1 1
0 1 1 2 −2

∣∣∣∣∣∣
−1

5
2


∼

 1 0 1 −1 −2
0 1 0 1 1
0 0 1 1 −3

∣∣∣∣∣∣
−1

5
−3

 ∼
 1 0 0 −2 1

0 1 0 1 1
0 0 1 1 −3

∣∣∣∣∣∣
2
5
−3


so the solution to Ax = b is given by x = p + su + tv where p = (2, 5,−3, 0, 0)T , u = (2,−1,−1, 1, 0)T and
v = (−1,−1, 3, 0, 1)T . We must optimize

z = c0 + cTx = (c0 + cT p) + (ctu)s + (cT v)t = 7 + 3s− 2t

subject to the constraints x1 ≥ 0, x2 ≥ 0, · · · , x5 ≥ 0 which we rewrite as 2s − t ≥ −2, −s − t ≥ −5,
−s + 3t ≥ 3, s ≥ 0 and t ≥ 0. We draw a picture of the set of points (s, t) which satisfy these constraints
(outlined in blue) along with the level curves z = min and z = max (shown in orange).

zmin zmax

We see that the maximum value is zmax = 12 which occurs when (s, t) = (3, 2), that is when x = (6, 0, 0, 3, 2)T ,
and the minimum value is zmin = 2 which occurs when (s, t) = (1, 4), that is when x = (0, 0, 8, 1, 4)T .
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[5] 2: Maximize and minimize w = 3x− y + z subject to x + z = 2, x2 + y2 ≤ 5 and 2x ≤ y z.

Solution: We solve the equality x + z = 2 to get z = 2 − x. We put this into the objective function to get
w = 3x − y + (2 − x) = 2x − y + 2 and into the inequality constraint 2x ≤ y z to get 2x ≤ y(2 − x). Thus
we need to maximize and minimize w = 2 + 2x − y subject to x2 + y2 ≤ 5 and 2x ≤ y(2 − x). We draw a
picture of the set of points (x, y) which satisfy these inequalities, outlined in blue, along with the level curves
w = wmin and w = wmax shown in orange. Note that x2 + y2 = 5 is the circle centred at (0, 0) of radius

√
5

and y =
2x

2− x
is a hyperbola with vertical asymptote x = 2 and horizontal asymptote y = lim

x→∞

2x

2− x
= −2.

y

w = wmin w = wmax

x

We see that wmin occurs at the point where (x, y) = (−2, 1), that is at (x, y, z) = (−2, 1, 4) and so we have

wmin = 2x− y + 2 = −3. Also, we see that wmax occurs at the point on the hyperbola y =
2x

2− x
where the

slope is m = 2. For y =
2x

2− x
we have y′ = 2 · (2− x) + x

(2− x)2
=

4

(2− x)2
and so y′ = 2 when (2−x)2 = 2, that

is when x = 2±
√

2. We use the point x = 2−
√

2 (the other point lies on the other branch of the hyperbola

which is not shown in the above picture). Whern x = 2−
√

2 we have y =
2x

2− x
=

4− 2
√

2√
2

= 2
√

2− 2 and

z = 2− x =
√

2, and so wmax = 2x− y + 2 = 2(2−
√

2)− (2
√

2− 2) + 2 = 8− 4
√

2.

2



[5] 3: Consider the LP where we minimize z = 4x1 + 3x2 − 2x3 subject to x1 + 2x2 − x3 = 1, 3x1 + x2 − 2x3 ≥ 4,
−2x1 − x2 + x3 ≤ −2, x1 ≥ 0 and x2 ≤ 0.

(a) Convert the given LP into an equivalent LP in SEF for x̃ =
(
x1, x2

−, x3
+, x3

−, s , t
)T

. Express the answer
in matrix form.

Solution: We introduce variables x2
−, x3

+, x3
− with x2 = −x2

− and x3 = x3
+ − x3

−, and we introduce
slack variables s and t. We maximize z̃ = −z = −4x1 − 3x2 + 2x3 = −4x1 + 3x2

− + 2(x3
−x3

−) subject to
x1 − 2x2

− − (x3
+ − x3

−) = 1, 3x1 − x2
− − 2(x3

+ − x3
−) = 4 + s and −2x1 + x2

− + (x3
+ − x3

−) + t = −2

with x1 ≥ 0, x1
− ≥ 0, x3

+ ≥ 0, x3
− ≥ 0, s ≥ 0 and t ≥ 0. In matrix form, we maximize z̃ = c̃ T x̃ subject to

Ã x̃ = b̃ with x̃ ≥ 0, where

c̃ =
(
− 4, 3, 2,−2, 0, 0

)T
, Ã =

 1 −2 −1 1 0 0
3 −1 −2 2 −1 0
−2 1 1 −1 0 1

 , b̃ =

 1
4
−2

 ,

(b) Given that x = (x1, x2, x3)T = (0,−1,−3)T is an optimal solution to the the given LP, find an optimal
solution to the equivalent LP in SEF that you obtained in part (a).

Solution: For the given solution, we have x1 = 0, x2 = −1 and x3 = −3. For a corresponding solution
x̃ =

(
x1, x2

−, x3
+, x3

−, s, t)T to the equivalent LP, we still have x1 = 0, and we have x2
− = −x2 = 1. Also,

we need x3
+ ≥ 0 and x3

− ≥ 0 with x3
+− x3

− = x3 = −3, so we can take x3
+ = 0 and x3

− = 3. Finally,
the slack variables are determined by the original two inequality constraints. The inequality constraint
3x1 + x2 − 2x3 ≥ 4 was replaced by the equality constraint 3x1 + x2 − 2x3 = 4 + s so we must have
s = 3x1 + x2 − 2x3 − 4 = 1. Similarly, the equality constraint −2x1 − x2 + x3 ≤ −2 was replaced by
−2x1 − x2 + x3 + t = −2 so we must have t = −2 + 2x1 + x2 − x3 = 0. Thus we have

x̃ =
(
0, 1, 0, 3, 1, 0

)T
.
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[5] 4: Consider an LP in SEF with constraints Ax = b and x ≥ 0, where

A =

 1 0 0 −2 1
0 1 0 1 1
0 0 1 1 −3

 , b =

−1
1
−1

 .

Show that the LP is unfeasible and find a certificate of unfeasibility.

Solution: A certificate of unfeasibility is given by a vector y with bT y < 0 and AT y ≥ 0. We shall find a vector
y with bT y = −1 and AT y ≥ 0. We have bT y = −1 when −y1 + y2− y3 = −1, that is when y1 = 1 + y2− y3.
We write the solution as y = p+ su+ tv with p = (1, 0, 0T , u = (1, 1, 0)T and v = (−1, 0, 1)T . We then have

AT y =


1 0 0
0 1 0
0 0 1
−2 1 1

1 1 −3


 1

0
0

+ s

 1
1
0

+ t

−1
0
1

 =


1
0
0
−2

1

+ s


1
1
0
−1

2

+ t


−1

0
1
3
−4

 .

The constraint AT y ≥ 0 is equivalent to s− t ≥ −1, s ≥ 0, t ≥ 0, −s+ 3t ≥ 2 and 2s− 4t ≥ −1. We draw a
picture of the set of all points (s, t) which satisfy these constraints, outlined in blue.

We select the point (s, t) = (4, 2), which satisfies the constraints, to obtain the certificate

y = p + su + tv = (3, 4, 2)T .

We note that because a certificate of unfeasibility exists, it follows that the given LP is unfeasible.
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[5] 5: Consider the LP where we maximize z(x) = c0 + cTx subject to Ax = b and x ≥ 0 where

c0 = 2 , c =
(
0, 0, 1, 0, 0, 2

)T
, A =

−1 1 1 0 0 1
−1 0 2 1 0 −1
−3 0 1 0 1 2

 , b =

 2
4
3

 .

(a) Use the Simplex Algorithm, starting with the feasible basis B = {2, 4, 5}, to show that the LP is
unbounded.

Solution: We perform iterations of the simplex algorithm, indicating the pivot positions in bold.

(
−cT c0
A b

)
=


0 0 −1 0 0 −2 2

−1 1 11 0 0 1 2
−1 0 2 1 0 −1 4
−3 0 1 0 1 2 3

 ∼

−1 1 0 0 0 −1 4

−1 1 1 0 0 1 2
1 −2 0 1 0 −3 0
−2 −1 0 0 1 11 1



∼


−3 0 0 0 1 0 5

11 2 1 0 −1 0 1
−5 −5 0 1 3 0 3
−2 −1 0 0 1 1 1

 ∼


0 6 3 0 −2 0 8

1 2 1 0 −1 0 1
0 5 5 1 −2 0 8
0 3 2 0 −1 1 3

 =

(
−c̃ T c̃0

Ã b̃

)
.

At this stage we see that c̃5 > 0 and Ã5 ≤ 0 and so the LP is unbounded.

(b) Find a feasible point x with z(x) = 100.

Solution: From our work in part (a) we see that a certificate of unboundedness is given by the basic point
x = (1, 0, 0, 8, 0, 3) and the vector y = (1, 0, 0, 2, 1, 1). We recall that for all t ≥ 0, the point x+ ty is feasible
and we have

z(x + ty) = c0 + cT (x + y) = (c0 + cTx) + t(cT y) = z(x) + t(cT y) = 8 + 2t .

To get z(x + ty) = 100, we choose t = 46, and we obtain

x = x + ty = (1, 0, 0, 8, 0, 3)T + 46 (1, 0, 0, 2, 1, 1)T = (47, 0, 0, 100, 46, 49)T .
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