

CO 250 Intro to Optimization, Solutions to the Midterm, Winter 2012

[5] **1:** Maximize and minimize $z = c^T x$ for $x \in \mathbf{R}^5$ subject to $Ax = b$ and $x \geq 0$, where

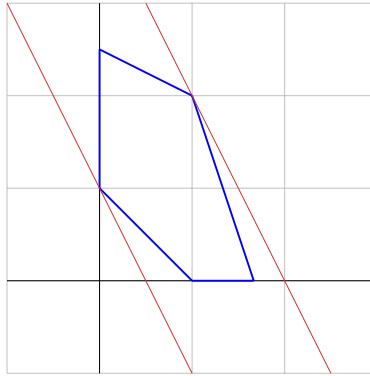
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 3 & 1 \\ 0 & 0 & 1 & -1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 5 \\ 5 \\ -1 \end{pmatrix}, \quad c = \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \\ 3 \end{pmatrix}.$$

You may solve this using a sketch of the feasibility set.

Solution: The solution to the equation $Ax = b$ is $x = p + su + tv$ where $p = (5, 5, -1, 0, 0)$, $u = (-1, -3, 1, 1, 0)$ and $v = (-2, -1, 1, 0, 1)$. To get $x \geq 0$ we need $-s - 2t \geq -5$, $-3s - t \geq -5$, $s + t \geq 1$, $s \geq 0$ and $t \geq 0$. Also note that

$$z = c^T x = c^T(p + su + tv) = (c \cdot p) + (c \cdot u)s + (c \cdot v)t = 4 + 2s + t.$$

The feasible set is shown below in the st -plane, outlined in blue, along with the lines $z = \min$ and $z = \max$.



We see that the maximum value of z occurs when $(s, t) = (1, 2)$ and then we have $z_{\max} = 8$, and the minimum occurs when $(s, t) = (0, 1)$ and then we have $z_{\min} = 5$.

[5] **2:** A company produces 2 products, P_1 and P_2 . Production of each product requires the use of 3 resources R_1 , R_2 and R_3 . Let a_{ij} be the number of units of R_i needed to produce one unit of P_j , let c_i be the cost per unit of R_i , let m_i be the maximum number of units of R_i available to the company, and let p_j be the selling price per unit of P_j . Suppose these constants are as follows.

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 1 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \quad m = \begin{pmatrix} 8 \\ 12 \\ 5 \end{pmatrix}, \quad p = \begin{pmatrix} 10 \\ 9 \end{pmatrix}.$$

Set up an LP which could be solved to determine the number of units x_j of each product P_j the company should produce to maximize its profit (you do not need to solve the LP).

Solution: For $i = 1, 2, 3$, let r_i be the amount of resource R_i used by the company to produce x_1 units of P_1 and x_2 units of P_2 . Then we have $r_i = a_{i1}x_1 + a_{i2}x_2$ for each i and so $r = Ax$. The constraints are that $r_i \leq m_i$ and $x_i \geq 0$, that is $Ax \leq m$ and $x \geq 0$. The company's revenue is $p_1x_1 + p_2x_2 = p^T x$ and the cost for the resources is $c_1r_1 + c_2r_2 + c_3r_3 = c^T r = c^T Ax$, and so the company's profit is $z = p^T x - c^T Ax$. Thus we must maximize $z = (p^T - c^T A)x$ subject to the constraints $Ax \leq m$ and $x \geq 0$. In particular, when A , c , m and p are as above, we have $p^T - c^T A = (10, 9) - (8, 8) = (2, 1)$ so we maximize $z = 2x_1 + x_2$ subject to the constraints $x_1 + 2x_2 \leq 8$, $3x_1 + x_2 \leq 12$, $x_1 + x_2 \leq 5$, $x_1 \geq 0$ and $x_2 \geq 0$.

[5] **3:** Consider the LP where we maximize $z = 5 + 3x_1 + x_2 - 2x_3$ subject to $x_1 - 2x_2 + x_3 \geq 1$, $x_1 - x_2 + 3x_3 \leq 4$ and $2x_1 - x_3 = 3$. Convert this LP to an LP in SEF and give the tableau for the new LP.

Solution: We write $x_i = x_i^+ - x_i^-$ for $i = 1, 2, 3$ and we introduce slack variables s, t . We must maximize $z = 5 + 3x_1^+ - 3x_1^- + x_2^+ - x_2^- - 2x_3^+ + 2x_3^-$ subject to the constraints

$$\begin{aligned} x_1^+ - x_1^- - 2x_2^+ + 2x_2^- + x_3^+ - x_3^- - s &= 1 \\ x_1^+ - x_1^- - x_2^+ + x_2^- + 3x_3^+ - 3x_3^- + t &= 4 \\ 2x_1^+ - 2x_1^- + 0x_2^+ - 0x_2^- - x_3^+ + x_3^- &= 3. \end{aligned}$$

The tableau is

$$\left(\begin{array}{ccccccccc} -3 & 3 & -1 & 1 & 2 & -2 & 0 & 0 & 5 \\ 1 & -1 & -2 & 2 & 1 & -1 & -1 & 0 & 1 \\ 1 & -1 & -1 & 1 & 3 & -3 & 0 & 1 & 4 \\ 2 & -2 & 0 & 0 & -1 & 1 & 0 & 0 & 3 \end{array} \right).$$

[5] **4:** Let $A = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & -3 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ and $c = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 2 \end{pmatrix}$.

(a) Determine whether $\bar{x} = (1, 4, 3, 2, 2)^T$ and $y = (0, 1, 2, 1, 1)^T$ form a certificate of unboundedness for the LP where we maximize $z = c^T x$ subject to $Ax = b$ and $x \geq 0$.

Solution: For \bar{x} and y to form a certificate of unboundedness, we need $x \geq 0$, $A\bar{x} = b$, $y \geq 0$, $Ay = 0$ and $c^T y > 0$. We clearly have $\bar{x} \geq 0$ and $y > 0$, and we also have

$$A\bar{x} = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ 3 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = b,$$

$$Ay = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ and}$$

$$c^T y = (0, 0, 0, -1, 2) \cdot (0, 1, 2, 1, 1) = 1 > 0,$$

and so \bar{x} and y do indeed form a certificate of unboundedness.

(b) Determine whether $\bar{x} = (0, 5, 0, 2, 1)^T$ and $y = (\frac{1}{2}, 0, \frac{1}{2})^T$ form a certificate of optimality for the LP where we maximize $w = -z = (-c)^T x$ subject to $Ax = b$ and $x \geq 0$.

Solution: For \bar{x} and y to form a certificate of optimality for this LP (which uses objective vector $-c$), we need $\bar{x} \geq 0$, $A\bar{x} = b$, $y^T b = (-c)^T$ and $y^T A \geq (-c)^T$. We clearly have $\bar{x} \geq 0$ and we have

$$A\bar{x} = \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = b,$$

$$y^T b = (\frac{1}{2}, 0, \frac{1}{2}) \cdot (1, 2, -1) = 0 \text{ and } (-c)^T \bar{x} = (0, 0, 0, -1, 2) \cdot (0, 5, 0, 2, 1) = 0, \text{ and}$$

$$y^T A = (\frac{1}{2} \ 0 \ \frac{1}{2}) \begin{pmatrix} 1 & 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & -3 \end{pmatrix} = (\frac{1}{2}, 0, \frac{1}{2}, 1, -2) \geq (0, 0, 0, 1, -2) = (-c)^T,$$

and so \bar{x} and y do indeed form a certificate of optimality.

[5] 5: Use the Simplex Algorithm, starting with the feasible basis $\mathcal{B} = \{1, 4, 5\}$, to find the vector $x \in \mathbf{R}^6$ which maximizes $z = c_0 + c^T x$ subject to $Ax = b$ and $x \geq 0$ where $c_0 = 1$ and

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 & -1 \\ 0 & 2 & -1 & 0 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}, \quad c = \begin{pmatrix} 0 \\ 3 \\ -1 \\ 0 \\ 0 \\ 2 \end{pmatrix}.$$

Solution 1: If we use the Simplex Algorithm as described in the book, then we will pivot successively at the positions (2, 2) then (3, 6) then (2, 3) obtaining the tableaus

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} = \begin{pmatrix} 0 & -3 & 1 & 0 & 0 & -2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 1 & 4 \\ 0 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 2 & -1 & 0 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 7 & 3 & 0 & -5 & 1 \\ 1 & 0 & -3 & -2 & 0 & 3 & 4 \\ 0 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & -5 & -2 & 1 & 3 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 0 & 0 & -\frac{4}{3} & -\frac{1}{3} & \frac{5}{3} & 0 & \frac{8}{3} \\ 1 & 0 & 2 & 0 & -1 & 0 & 3 \\ 0 & 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 & -\frac{5}{3} & -\frac{2}{3} & \frac{1}{3} & 1 & \frac{1}{3} \end{pmatrix} \sim \begin{pmatrix} 0 & 4 & 0 & 1 & 3 & 0 & 4 \\ 1 & -6 & 0 & -2 & -3 & 0 & 1 \\ 0 & 3 & 1 & 1 & 1 & 0 & 1 \\ 0 & 5 & 0 & 1 & 2 & 1 & 2 \end{pmatrix}.$$

At this stage (since the entries in the upper-left 1×6 block are all ≥ 0), we have reached the maximum value $z = 4$ which occurs at the basic point $\bar{x} = (1, 0, 1, 0, 0, 2)^T$.

Solution 2: If we use the Simplex Algorithm as described in class, then we will pivot successively at positions (3, 6) then (2, 3) obtaining

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} = \begin{pmatrix} 0 & -3 & 1 & 0 & 0 & -2 & 1 \\ 1 & 2 & 1 & 0 & 0 & 1 & 4 \\ 0 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 2 & -1 & 0 & 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & -1 & 0 & 2 & 0 & 3 \\ 1 & 0 & 2 & 0 & -1 & 0 & 3 \\ 0 & 3 & 1 & 1 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 0 & 4 & 0 & 1 & 3 & 0 & 4 \\ 1 & -6 & 0 & -2 & -3 & 0 & 1 \\ 0 & 3 & 1 & 1 & 1 & 0 & 1 \\ 0 & 5 & 0 & 1 & 2 & 1 & 2 \end{pmatrix}.$$

At this stage (since the entries in the upper-left 1×6 block are all ≥ 0), we have reached the maximum value $z = 4$ which occurs at the basic point $\bar{x} = (1, 0, 1, 0, 0, 2)^T$.

[5]

6: Consider the LP with tableau

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 & -2 & 0 & -6 & 3 \\ -1 & 0 & 1 & 1 & 0 & 3 & 2 \\ 3 & 0 & 0 & 2 & 1 & 2 & 1 \\ 2 & 1 & 0 & -1 & 0 & 1 & 0 \end{pmatrix}.$$

Note that, up to a permutation of the rows, the LP is in canonical form for $\mathcal{B} = \{2, 3, 5\}$.

(a) If we pivot at position (1, 4), then what will the new canonical basis be?

Solution: The new basis will be $\tilde{\mathcal{B}} = \{2, 4, 5\}$

(b) If we pivot at position (2, 6), then will the new basis be feasible?

Solution: If we pivot at (2, 6) then we will obtain $\tilde{b} = \left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right)^T$. Since $\tilde{b}_3 < 0$ the new basis is not feasible.

(c) If we pivot at position (1, 1), then what will the new basic point be?

Solution: If we pivot at (1, 1) the we will have $\tilde{b} = (-2, 7, 4)^T$. Since columns 1, 2 and 5 of \tilde{A} will be $\tilde{A}_1 = e_1$, $\tilde{A}_2 = e_3$ and $\tilde{A}_5 = e_2$, the new basic point will be $\tilde{x} = (-2, 4, 0, 0, 7, 0)$.

(d) If we pivot at position (2, 1), then what will be the value of z at the new basic point?

Solution: If we pivot at (2, 1) then the value of z at the new basic point will be $\tilde{c}_0 = 3 - \frac{4}{3} = \frac{5}{3}$.

(e) If we pivot at position (1, 6), then will the value of z at the new basic point be optimal?

Solution: If we pivot at (1, 6) then although we will obtain $-\tilde{c} = (2, 0, 2, 0, 0, 0)^T$ so that $\tilde{c} \leq 0$, we will also obtain $\tilde{b} = \left(\frac{2}{3}, -\frac{1}{3}, -\frac{2}{3}\right)$ so we do not have $\tilde{b} \geq 0$ and so the new basic point is not feasible, so we have no reason to expect that we have reached the maximum value of z .