
CO 250 Intro to Optimization, Solutions to the Midterm, Winter 2012

[5] 1: Maximize and minimize z = cTx for x ∈ R5 subject to Ax = b and x ≥ 0, where

A =

 1 0 0 1 2
0 1 0 3 1
0 0 1 −1 −1

 , b =

 5
5
−1

 , c =


2
−1

1
0
3

 .

You may solve this using a sketch of the feasibility set.

Solution: The solution to the equation Ax = b is x = p+ su+ tv where p = (5, 5,−1, 0, 0),
u = (−1,−3, 1, 1, 0) and v = (−2,−1, 1, 0, 1). To get x ≥ 0 we need −s − 2t ≥ −5,
−3s− t ≥ −5, s + t ≥ 1, s ≥ 0 and t ≥ 0. Also note that

z = cTx = cT (p + su + tv) = (c. p) + (c.u) s + (c. v) t = 4 + 2s + t .

The feasible set is shown below in the st-plane, outlined in blue, along with the lines
z = min and z = max.

We see that the maximum value of z occurs when (s, t) = (1, 2) and then we have zmax = 8,
and the minimum occurs when (s, t) = (0, 1) and then we have zmin = 5.
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[5] 2: A company produces 2 products, P1 and P2. Production of each product requires the use
of 3 resources R1, R2 and R3. Let aij be the number of units of Ri needed to produce one
unit of Pj , let ci be the cost per unit of Ri, let mi be the maximum number of units of
Ri available to the company, and let pj be the selling price per unit of Pj . Suppose these
constants are as follows.

A =

 1 2
3 1
1 1

 , c =

 2
1
3

 , m =

 8
12
5

 , p =

(
10
9

)
.

Set up an LP which could be solved to determine the number of units xj of each product
Pj the company should produce to maximize its profit (you do not need to solve the LP).

Solution: For i = 1, 2, 3, let ri be the amount of resource Ri used by the company to
produce x1 units of P1 and x2 units of P2. Then we have ri = ai1x1 + ai2x2 for each
i and so r = Ax. The constraints are that ri ≤ mi and xi ≥ 0, that is Ax ≤ m and
x ≥ 0. The company’s revenue is p1x1 + p2x2 = pTx and the cost for the resources is
c1r1 + c2r2 + c3r3 = cT r = cTAx, and so the company’s profit is z = pTx − cTAx. Thus
we must maximize z = (pT − cTA)x subject to the constraints Ax ≤ m and x ≥ 0. In
particular, when A, c, m and p are as above, we have pT − cTA = (10, 9)− (8, 8) = (2, 1)
so we maximize z = 2x1 + x2 subject to the constraints x1 + 2x2 ≤ 8, 3x1 + x2 ≤ 12,
x1 + x2 ≤ 5, x1 ≥ 0 and x2 ≥ 0.

[5] 3: Consider the LP where we maximize z = 5 + 3x1 + x2 − 2x3 subject to x1 − 2x2 + x3 ≥ 1,
x1−x2 +3x3 ≤ 4 and 2x1−x3 = 3. Convert this LP to an LP in SEF and give the tableau
for the new LP.

Solution: We write xi = xi
+ − xi

− for i = 1, 2, 3 and we introduce slack variables s, t. We
must maximize z = 5 + 3x1

+−3x1
− +x2

+−x2
−−2x3

+ + 2x3
− subject to the constraints

x1
+ − x1

− − 2x2
+ + 2x2

− + x3
+ − x3

− − s = 1

x1
+ − x1

− − x2
+ + x2

− + 3x3
+ − 3x3

− + t = 4

2x1
+ − 2x1

− + 0x2
+ − 0x2

− − x3
+ + x3

− = 3 .

The tableau is 
−3 3 −1 1 2 −2 0 0 5

1 −1 −2 2 1 −1 −1 0 1
1 −1 −1 1 3 −3 0 1 4
2 −2 0 0 −1 1 0 0 3

 .
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[5] 4: Let A =

 1 0 0 1 −1
0 1 0 −2 1
0 0 1 1 −3

, b =

 1
2
−1

 and c =


0
0
0
−1

2

.

(a) Determine whether x = (1, 4, 3, 2, 2)T and y = (0, 1, 2, 1, 1)T form a certificate of
unboundedness for the LP where we maximize z = cTx subject to Ax = b and x ≥ 0.

Solution: For x and y to form a certificate of unboundedness, we need x ≥ 0, Ax = b,
y ≥ 0 Ay = 0 and cT y > 0. We clearly have x ≥ 0 and y > 0, and we also have

Ax =

 1 0 0 1 −1
0 1 0 −2 1
0 0 1 1 −3




1
4
3
2
2

 =

 1
2
−1

 = b ,

Ay =

 1 0 0 1 −1
0 1 0 −2 1
0 0 1 1 −3




0
1
2
1
1

 =

 0
0
0

 , and

cT y = (0, 0, 0,−1, 2). (0, 1, 2, 1, 1) = 1 > 0 ,

and so x and y do indeed form a certificate of unboundedness.

(b) Determine whether x = (0, 5, 0, 2, 1)T and y =
(
1
2 , 0,

1
2

)T
form a certificate of optimality

for the LP where we maximize w = −z = (−c)Tx subject to Ax = b and x ≥ 0.

Solution: For x and y to form a certificate of optimality for this LP (which uses objective
vector −c), we need x ≥ 0, Ax = b, yT b = (−c)T and yTA ≥ (−c)T . We clearly have
x ≥ 0 and we have

Ax =

 1 0 0 1 −1
0 1 0 −2 1
0 0 1 1 −3




0
5
0
2
1

 =

 1
2
−1

 = b ,

yT b =
(
1
2 , 0,

1
2

). (1, 2,−1
)

= 0 and (−c)Tx = (0, 0, 0,−1, 2). (0, 5, 0, 2, 1) = 0 , and

yTA = ( 1
2 0 1

2 )

 1 0 0 1 −1
0 1 0 −2 1
0 0 1 1 −3

 =
(
1
2 , 0,

1
2 , 1,−2

)
≥
(
0, 0, 0, 1,−2

)
= (−c)T ,

and so x and y do indeed form a certificate of optimality.
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[5] 5: Use the Simplex Algorithm, starting with the feasible basis B = {1, 4, 5}, to find the vector
x ∈ R6 which maximizes z = c0 + cTx subject to Ax = b and x ≥ 0 where c0 = 1 and

A =

 1 2 1 0 0 1
0 1 2 1 0 −1
0 2 −1 0 1 1

 , b =

 4
0
1

 , c =


0
3
−1

0
0
2

 .

Solution 1: If we use the Simplex Algorithm as described in the book, then we will pivot
successively at the positions (2, 2) then (3, 6) then (2, 3) obtaining the tableaus

(
−cT c0
A b

)
=


0 −3 1 0 0 −2 1

1 2 1 0 0 1 4
0 1 2 1 0 −1 0
0 2 −1 0 1 1 1

 ∼


0 0 7 3 0 −5 1

1 0 −3 −2 0 3 4
0 1 2 1 0 −1 0
0 0 −5 −2 1 3 1



∼


0 0 − 4

3 −
1
3

5
3 0 8

3

1 0 2 0 −1 0 3
0 1 1

3
1
3

1
3 0 1

3

0 0 − 5
3 −

2
3

1
3 1 1

3

 ∼


0 4 0 1 3 0 4

1 −6 0 −2 −3 0 1
0 3 1 1 1 0 1
0 5 0 1 2 1 2

 .

At this stage (since the entries in the upper-left 1× 6 block are all ≥ 0), we have reached
the maximum value z = 4 which occurs at the basic point x = (1, 0, 1, 0, 0, 2)T .

Solution 2: If we use the Simplex Algorithm as described in class, then we will pivot
successively at positions (3, 6) then (2, 3) obtaining

(
−cT c0
A b

)
=


0 −3 1 0 0 −2 1

1 2 1 0 0 1 4
0 1 2 1 0 −1 0
0 2 −1 0 1 1 1

 ∼


0 1 −1 0 2 0 3

1 0 2 0 −1 0 3
0 3 1 1 1 0 1
0 2 −1 0 1 1 1



∼


0 4 0 1 3 0 4

1 −6 0 −2 −3 0 1
0 3 1 1 1 0 1
0 5 0 1 2 1 2

 .

At this stage (since the entries in the upper-left 1× 6 block are all ≥ 0), we have reached
the maximum value z = 4 which occurs at the basic point x = (1, 0, 1, 0, 0, 2)T .
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[5] 6: Consider the LP with tableau

(
−cT c0
A b

)
=


4 0 0 −2 0 −6 3

−1 0 1 1 0 3 2
3 0 0 2 1 2 1
2 1 0 −1 0 1 0

 .

Note that, up to a permutation of the rows, the LP is in canonical form for B = {2, 3, 5}.
(a) If we pivot at position (1, 4), then what will the new canonical basis be?

Solution: The new basis will be B̃ = {2, 4, 5}
(b) If we pivot at position (2, 6), then will the new basis be feasible?

Solution: If we pivot at (2, 6) then we will obtain b̃ =
(
1
2 ,

1
2 ,−

1
2

)T
. Since b̃3 < 0 the new

basis is not feasible.

(c) If we pivot at position (1, 1), then what will the new basic point be?

Solution: If we pivot at (1, 1) the we will have b̃ = (−2, 7, 4)T . Since columns 1, 2 and 5 of

Ã will be Ã1 = e1, Ã2 = e3 and Ã5 = e2, the new basic point will be x̃ =
(
−2, 4, 0, 0, 7, 0).

(d) If we pivot at position (2, 1), then what will be the value of z at the new basic point?

Solution: If we pivot at (2, 1) then the value of z at the new basic point will be c̃0 =
3− 4

3 = 5
3 .

(e) If we pivot at position (1, 6), then will the value of z at the new basic point be optimal?

Solution: If we pivot at (1, 6) then although we will obtain −c̃ = (2, 0, 2, 0, 0, 0)T so that

c̃ ≤ 0, we will also obtain b̃ =
(
2
3 ,−

1
3 ,−

2
3

)
so we do not have b̃ ≥ 0 and so the new basic

point is not feasible, so we have no reason to expect that we have reached the maximum
value of z.
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