
CO 250 Intro to Optimization, Solutions to Assignment 5

1: (a) Consider the LP where we maximize z = 3x1 − x2 + 2x3 for x1, x2, x3 ∈ R subject to the constraints
2x1 + x2 − x3 ≥ −4,−x1 + 2x2 ≥ 3, x1 + 3x2 − x3 ≤ 2, −x1 + 2x2 − 2x3 = 1 and x3 ≥ 0. Put the LP into
SEF using the variables x1

+, x1
−, x2

+, x2
−, x3, s1, s2, t and then find and simplify the DLP.

Solution: In SEF, we maximize z = cTx subject to Ax = b, x ≥ 0 where x =
(
x1

+, x1
−, x2

+, x2
−, x3, s1, s2, t

)T
and

c =
(
3,−3,−1, 1, 2, 0, 0, 0

)T
, A =


2 −2 1 −1 −1 −1 0 0
−1 1 2 −2 0 0 −1 0

1 −1 3 −3 −1 0 0 1
−1 1 2 −2 −2 0 0 0

 , b =


−4

3
2
12

 .

The DLP is to minimize w = bT y subject to AT y ≥ c, that is to minimize w = −4y1 + 3y2 + 2y3 + y4 subject
to 2y1 − y2 + y3 − y4 = 3, y1 + 2y2 + 3y3 + 2y4 = −1, −y1 − y3 − 2y4 ≥ 2, y1 ≤ 0, y2 ≤ 0 and y3 ≥ 0.

(b) Consider the LP where we maximize z = cTx subject to Ax ≤ b, x ≥ 0. Put the LP into SEF then find
and simplify the DLP. Show that for feasible points x and y for the LP and the DLP, the complementary
slackness conditions are that for all i, either xi = 0 or (AT y)i = ci, and for all j, either yj = 0 or (Ax)j = bj .

Solution: In SEF, we maximize z =

(
c
0

)T (
x
s

)
subject to

(
A I

)(x
s

)
= b,

(
x
s

)
≥ 0.

The DLP is to minimize w = bT y subject to

(
AT

I

)
y ≥

(
c
0

)
, that is subject to AT y ≥ c and y ≥ 0.

The complementary slackness conditions are that for all i, either

(
x
s

)
i

= 0 or

((
AT

I

)
y

)
i

=

(
c
0

)
i

.

Equivalently, for all i either xi = 0 or
(
AT y

)
i

= ci, and for all j either sj = 0 or yj = 0. Note that when x
is feasible we have Ax + s = b so that sj = 0 is equivalent to (Ax)j = bj .

2: (a) Consider the LP where we maximize z = cTx subject to Ax = b and x ≥ 0, where

c =
(
2, 1,−3, 2, 2, 3

)T
, A =

 1 3 1 0 −4 3
1 2 1 1 −2 4
2 2 −1 1 −3 1

 , b =

 4
6
7

 .

For each of the following points x, determine whether x is an optimal solution to the LP.

x = (3, 0, 1, 2, 0, 0)T , (4, 4, 0, 0, 3, 0)T , (1, 0, 0, 3, 0, 4)T .

Solution: For x = (3, 0, 1, 2, 0, 0)T we have Ax = b and z(x) = cTx = 7, for x = (4, 4, 0, 0, 3, 0)T we have
Ax = b and cTx = 18, and for x = (1, 0, 0, 3, 0, 4)T we have Ax = (13, 20, 9)T 6= b. It follows that only the
second of the three points could be an optimal solution. Note that x = (4, 4, 0, 0, 3, 0)T is the basic point for
the basis B = {1, 2, 5}. Let y = AB

−T cB . We have

(
AB

T
∣∣cB) =

 1 1 2
3 2 2
−4 −2 −3

∣∣∣∣∣∣
2
1
2

 ∼
 1 1 2

0 1 4
0 2 5

∣∣∣∣∣∣
2
5
10

 ∼
 1 0 −2

0 1 4
0 0 3

∣∣∣∣∣∣
−3

5
0

 ∼
 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
−3

5
0


and so y = (−3, 5, 0)T . Note that bT y = (4, 6, 7). (−3, 5, 0) = 18 = cTx and

AT y =


1 1 2
3 2 2
1 1 −1
0 1 1
−4 −2 −3

3 4 1


−3

5
0

 =


2
1
2
5
2
11

 ≥


2
1
−3

2
2
3

 = c

and so y = (−3, 5, 0)T is a certificate of optimality for x = (4, 4, 0, 0, 3, 0)T .



(b) Find an example of an LP, where we maximize z = cTx subject to Ax = b and x ≥ 0, along with a basis
B for the LP, such that the basic point x for B is an optimal solution to the LP, but the vector y = AB

−T cB
is not a certificate of optimality for x.

Solution: We look for an example in which the optimal solution x is a basic point for several different bases.

We can, for example, take c = (0, 0, 1, 0)T , A =

(
1 0 1 1
0 1 1 −1

)
and b =

(
1
1

)
. The point x = (0, 0, 1, 0)T is

an optimal solution and it is the basic point for each of the bases B1 = {1, 3}, B2 = {2, 3} and B3 = {3, 4}.
For B = B1 = {1, 3}, if we let

y = AB
−T cB =

(
1 1
0 1

)−T (
0
1

)
=

(
1 0
1 1

)−1(
0
1

)
=

(
1 0
−1 1

)(
0
1

)
=

(
0
1

)
then we have

AT y =


1 0
0 1
1 1
1 −1

( 0
1

)
=


0
1
1
−1


and so the condition that AT y ≥ c is not satisfied, so y is not a certificate for x.

3: Let G be the weighted graph with vertex set V = {v1, v2, v3, v4} and edge set E = {e1, e2, e3, e4, e5, e6},
where e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v3}, e5 = {v2, v4} and e6 = {v3, v4}, with weight
vector c = (2, 4, 5, 1, 3, 1)T , where ci = w(ei).

(a) Let M = {S1, S2, S3, S4} where S1 = {v1}, S2 = {v1, v2}, S3 = {v1, v3} and S4 = {v1, v2, v3}. Find
cut(S) for each S ∈M , and hence find the matrix A with entries

AS,e =

{
1 if e ∈ cut(S)

0 if e /∈ cut(S) .

Solution: We have cut(S1) = {e1, e2, e3}, cut(S2) = {e2, e3, e4, e5}, cut(S3) = {e1, e3, e4, e6}, and cut(S4) =
{e3, e5, e6} and so

A =


1 1 1 0 0 0
0 1 1 1 1 0
1 0 1 1 0 1
0 0 1 0 1 1

 .

(b) To find the minimum weight path from a = v1 to b = v4, we minimize z = cTx subject to Ax ≥ 11,
x ≥ 0. Put this LP into SEF, find and simplify the DLP replacing the dual variable y by u = −y, then put
the DLP into SEF.

Solution: In SEF, we maximize −z =

(
−c
0

)T (
x
s

)
subject to

(
A − I

)(x
s

)
= 11 with

(
x
s

)
≥ 0.

The DLP is to minimize −w = 11T y subject to

(
AT

−I

)
y ≥

(
−c
0

)
, that is AT ≥ −c and −y ≥ 0.

Replacing y by u = −y, the DLP is to maximize w = 11Tu subject to ATu ≤ c and u ≥ 0.

In SEF, the DLP is to maximize w =

(
11
0

)T (
u
t

)
subject to

(
AT I

)(u
t

)
= c and

(
u
t

)
≥ 0.



(c) Solve the DLP using Phase II of the Simplex Algorithm, starting with the obvious feasible basis.

Solution: The Simplex Algorithm gives

(
−11T 0 0

AT I c

)
=



−1 −1 −1 −1 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 2
1 1 0 0 0 1 0 0 0 0 4
1 1 1 1 0 0 1 0 0 0 5
0 1 1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 3
0 0 1 1 0 0 0 0 0 1 1


∼



0 −1 0 −1 1 0 0 0 0 0 2

1 0 1 0 1 0 0 0 0 0 2
0 1 −1 0 −1 1 0 0 0 0 2
0 1 0 1 −1 0 1 0 0 0 3
0 11 1 0 0 0 0 1 0 0 1
0 1 0 1 0 0 0 0 1 0 3
0 0 1 1 0 0 0 0 0 1 1



∼



0 0 1 −1 1 0 0 1 0 0 3

1 0 1 0 1 0 0 0 0 0 2
0 0 −2 0 −1 1 0 −1 0 0 1
0 0 −1 1 −1 0 1 −1 0 0 2
0 1 1 0 0 0 0 1 0 0 1
0 0 −1 1 0 0 0 −1 1 0 2
0 0 1 11 0 0 0 0 0 1 1


∼



0 0 2 0 1 0 0 1 0 1 4

1 0 1 0 1 0 0 0 0 0 2
0 0 −2 0 −1 1 0 −1 0 0 1
0 0 −2 0 −1 0 1 −1 0 −1 1
0 1 1 0 0 0 0 1 0 0 1
0 0 −2 0 0 0 0 −1 1 −1 1
0 0 1 1 0 0 0 0 0 1 1


The optimal solution is the basic solution for B = {1, 2, 4, 6, 7, 9}, given by

(
u
t

)
=

(
u
t

)
with u = (2, 1, 0, 1)

and t = (0, 1, 1, 0, 1, 0)T .

(d) Use your solution from part (c) and the formula for a certificate to obtain an optimal solution to the LP.

Solution: An optimal solution to the LP is given by a certificate x of optimality for the optimal dual solution,

so we can take x =
(
AT I

)−T
B

(
11
0

)
B

. We have

((
AT I

)T
B

∣∣∣ ( 11
0

)
B

)
=


1 1 1 0 0 0
0 1 1 1 1 0
0 0 1 0 1 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣

1
1
1
0
0
0

 ∼


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣

1
0
0
1
0
1


and so an optimal solution to the LP is x = (1, 0, 0, 1, 0, 1)T . This corresponds to the path with edges
e1, e4, e6.



4: Let G be the weighted graph with vertex set V = {v1, v2, · · · , v7} and edge set E = {e1, e2, · · · , e12}, where
e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v1, v4}, e4 = {v2, v4}, e5 = {v2, v5}, e6 = {v3, v4}, e7 = {v3, v6},
e8 = {v4, v5}, e9 = {v4, v6}, e10 = {v4, v7}, e11 = {v5, v7} and e12 = {v6, v7}, with weight vector given by
c = (6, 4, 1, 5, 1, 2, 4, 3, 7, 8, 4, 2)T , where ci = w(ei) (see the picture below).

v2 1 v5

6 5 3 4

1 8a = v1 v7 = b
v4

4 2 7 2

4
v3 v6

Use the Minimum Weight Path Algorithm to find a minimum weight path from a = v1 to b = v12 along with
an optimal dual solution u. At each step, indicate the vertex set Sk, the cut cut(Sk), the slack slk(e) for
each e ∈ cut(Sk), the added edge dk+1, and the value of the entry u

Sk
of the feasible dual point.

Solution: The results of the algorithm are as follows.

S0 = {v1} , cut(S0) = {e1, e2, e3}
sl(e1) = 6 , sl(e2) = 4 , sl(e3) = 1

d1 = e3 = {v1, v4} , uS0
= sl(e3) = 1

S1 = {v1, v4} , cut(S1) = {e1, e2, e4, e6, e8, e9, e10}
sl(e1) = 5 , sl(e2) = 3 , sl(e4) = 5 , sl(e6) = 2 , sl(e8) = 3 , sl(e9) = 7 , sl(e10) = 8

d2 = e6 = {v3, v4} , uS1 = sl(e6) = 2

S2 = {v1, v3, v4} , cut(S2) = {e1, e4, e7, e8, e9, e10}
sl(e1) = 3 , sl(e4) = 3 , sl(e7) = 4 , sl(e8) = 1 , sl(e9) = 5 , sl(e10) = 6

d3 = e8 = {v4, v5} , uS2
= 1

S3 = {v1, v3, v4, v5} , cut(S3) = {e1, e4, e5, e7, e9, e10, e11}
sl(e1) = 4 , sl(e4) = 2 , sl(e5) = 1 , sl(e7) = 3 , sl(e9) = 4 , sl(e10) = 5 , sl(e11) = 4

d4 = e5 = {v2, v5} , uS3
= sl(e5) = 1

S4 = {v1, v2, v3, v4, v5} , cut(S4) = {e7, e9, e10, e11}
sl(e7) = 2 , sl(e9) = 3 , sl(e10) = 4 , sl(e11) = 3

d5 = e7 = {v3, v6} , uS4 = sl(e7) = 2

S5 = {v1, v2, v3, v4, v5, v6} , cut(S5) = {e10, e11, e12}
sl(e10) = 2 , sl(e11) = 1 , sl(e12) = 2

d6 = e11 = {v5, v7} , uS5
= sl(e11 = 1 .

We summarize the results in the following picture.

v2 1 v5

6 5 3 4

1 8
a = v1 v7 = b

v4

4 2 7 2

4
v3 v6

1
1

2

1 1 2



5: Let G be the weighted graph shown below.
d

b g

a e i

c h

f

4 2

1

1 2 3 9

4 7

7 3 5 4

1

4 2

(a) Use the Minimum Weight Path Algorithm to find a minimum weight path from a to i along with an
optimal dual solution (you can indicate the steps of the algorithm in the form of a picture).

Solution: The results of the algorithm are summarized in the following picture.

d

b g

a e i

c h

f

4 2

1

1 2 3 9

4 7

7 3 5 4

1

4 2

1
1

1 1
1

2

1

2

We see that a minimum weight path is the path a, b, e, i with total weight z = 1 + 2 + 7 = 10. An optimal
dual solution is as shown with value w = 1 + 1 + 1 + 1 + 2 + 1 + 2 + 1 = 10.

(b) Find an optimal dual solution u with as few nonzero entries uS as you can.

Solution: An optimal dual solution u with 4 non-zero entries, namely u{a} = 1, u{a,b,d,g} = 2, u{a,b,d,e,g} = 3
and u{a,b,c,d,e,f,g,h} = 4 is shown below.

d

b g

a e i

c h

f

4 2

1

1 2 3 9

4 7

7 3 5 4

1

4 2

1
2

3 4


