
CO 250 Intro to Optimization, Solutions to Assignment 2

1: (a) Consider the LP where we minimize z(x) = 3− 2x1 − x2 + 2x3 subject to the constraints

−x1 − 2x2 + 3x3 = 1 , 3x1 + x2 − x3 = 2

−2x1 + 3x2 − 2x3 ≤ 4 , −x1 − x2 + 2x3 ≥ 3 , x1 ≤ 0 .

Convert this to an equivalent LP in SEF for x̃ =
(
x1
−, x2

+, x2
−, x3

+, x3
−, s , t )T ∈ R7. Express the answer

in matrix form (that is in the form where we maximize z̃(x̃) = c̃0 + c̃ T subject to Ã x̃ = b̃, x̃ ≥ 0).

Solution: Note that we must maximize z̃ = −z = −3 + 2x1 +x2− 2x3. We introduce the suggested variables
x1
−, x2

+, x2
−, x3

+, x3
−, s , t, and write x1 = −x1

−, x2 = x2
+ − x2

− and x3 = x3
+ − x3

−, and we use s and
t as slack variables. In terms of these new variables, we maximize

z̃ = −3− 2x1
− + x2

+ − x2
− − 2x3

+ + 2x3
−

subject to

x1
− − 2x2

+ + 2x2
− + 3x3

+ − 3x3
− = 1 , −3x1

− + x2
+ − x2

− − x3
+ + x3

− = 2 ,

2x1
− + 3x2

+ − 3x2
− − 2x3

+ + 2x3
− + s = 4 , x1

− − x2
+ + x2

− + 2x3
+ − 2x3

− − t = 3

x1
− ≥ 0 , x2

+ ≥ 0 , x2
− ≥ 0 , x3

+ ≥ 0 , x3
− ≥ 0 , s ≥ 0 , t ≥ 0 .

In matrix form, we maximize z̃(x̃) = c̃0 + c̃ T subject to Ã x̃ = b̃, x̃ ≥ 0 where

c̃0 = −3 , c̃ =
(
− 2, 1,−1,−2, 2, 0, 0

)T
, Ã =


1 −2 2 3 −3 0 0
−3 1 −1 −1 1 0 0

2 3 −3 −2 2 1 0
1 −1 1 2 −2 0 −1

 , b̃ =


1
2
4
3

 .

(b) Consider the LP where we maximize z(x) = 3x1 − x2 + 2x3 + x4 − 2x5 subject to the constraints

x1 + 2x2 + x3 + 3x4 − x5 = 3 , 2x1 + 3x2 + x3 + 4x4 = 5

3x1 + 2x2 + x3 − x4 + 6x5 ≤ 4 , x1 ≥ 0 , x3 ≥ 0 .

Solve the equality constraints for x2 and x4 in terms of x1, x3 and x5, and then convert this LP to an

equivalent LP in SEF for x̃ =
(
x1, x3, x5

+, x5
−, s

)T ∈ R5. Express the answer in matrix form.

Solution: First we solve the two equality constraints reducing the associated augmented matrix putting
pivots in columns 2 and 4 (in the first step we replace row 1 by row 2-row 1).(

1 2 1 3 −1
2 3 1 4 0

∣∣∣∣ 3
5

)
∼
(

1 1 0 1 1
2 3 1 4 0

∣∣∣∣ 2
5

)
∼
(

1 1 0 1 1
−1 0 1 1 −3

∣∣∣∣ 2
−1

)
∼
(

2 1 −1 0 4
−1 0 1 1 −3

∣∣∣∣ 3
−1

)
The solution to the two equality constraints is given by x2 = 3−2x1 +x3−4x5 and x4 = −1+x1−x3 +3x5.
We put these expressions for x2 and x4 into the formula for z to get

z = 3x1 − (3− 2x1 + x3 − 4x5) + 2x3 + (−1 + x1 − x3 + 3x5)− 2x5 = −4 + 6x1 + 0x3 + 5x5

and we put them into the inequality constraint to get

3x1 + 2(3− 2x1 + x3 − 4x5) + x3 − (−1 + x1 − x3 + 3x5) + 6x5 ≤ 4

that is
−2x1 + 4x3 − 5x5 ≤ −3 .

We introduce variables x5
+ and x5

− and set x5 = x5
+ − x5

−, and we introduce the slack variable s.
The given LP is equivalent to the LP where we maximize z = −4 + 6x1 + 0x3 + 5x5

+ − 5x5
− subject to

−2x1 + 4x3 − 5x5
+ + 5x5

− + s = −3. In matrix form, we maximize z̃ = z = c̃0 + c̃ T x̃ for x̃ ∈ R5 subject to

Ã x̃ = b̃, x̃ ≥ 0 where x̃ =
(
x1, x3, x5

+, x5
−, s

)T
and

c̃0 = −4 , c̃ =
(
6, 0, 5,−5, 0

)T
, Ã = (−2 4 −5 5 1 ) , b̃ =

(
− 3
)
.



2: An LP in Standard Inequality Form (or SIF) is an LP in which we maximize the value of z(x) = c0 +cTx
for x ∈ Rn subject to Ax ≤ b, where c0 ∈ R, c ∈ Rn and A ∈Mk×n(R).

(a) Show that every LP is equivalent to an LP in SIF by converting the LP where we maximize z(x) = c0+cTx
subject to Ax = u, Bx ≥ v, Cx ≤ w into an equivalent LP in SEF. Express the answer in matrix form.

Solution: The given constraints can be written as

Ax ≤ u , Ax ≥ u , Bx ≥ v , Cx ≤ w

or equivalently as
Ax ≤ u , (−A)x ≤ (−u) , (−B)x ≤ (−v) , Cx ≤ w .

Thus the given LP is equivalent to the LP in SIF where we maximize z(x) = c0 + cTx subject to
A
−A
−B
C

 x ≤


u
−u
−v
w

 .

(b) Consider the LP in SIF where we maximize z(x) = c0 + cTx subject to Ax ≤ b.

(i) Show that if y ∈ Rk with AT y = 0, y ≥ 0 and bT y < 0, then the LP is unfeasible.

Solution: Suppose that y ∈ Rk with AT y = 0, y ≥ 0 and bT y < 0. Suppose, for a contradiction, that the
LP is feasible. Choose a feasible point x ∈ Rn, so we have Ax ≤ b. Since Ax ≤ b and y ≥ 0 we have
yTAx ≤ yT b, and hence, by taking the transpose on both sides, xTAT y ≤ bT y. Since AT y = 0 this gives
bT y ≥ 0, contradicting the fact that bT y < 0.

(ii) Show that if x ∈ Rn with Ax ≤ b and y ∈ Rn with Ay ≤ 0 and cT y > 0 then the LP is unbounded.

Solution: Suppose that x ∈ Rn with Ax ≤ b and that y ∈ Rn with Ay ≤ 0 and cT y > 0. Consider any point
of he form x + ty with t ≥ 0. Since Ax ≤ b, Ay ≤ 0 and t ≥ 0, we have A(x + ty) = Ax + t Ay ≤ b, so the
point x + ty is feasible. Also, we have z(x + ty) = c0 + cTx + t cT y →∞ as t→∞ since cT y > 0. Thus the
LP is unbounded.

(iii) Show that if x ∈ Rn with Ax ≤ b and y ∈ Rk with AT y = c, y ≥ 0 and bT y = cTx, then x is an optimal
solution for the LP.

Solution: Suppose that x ∈ Rn with Ax ≤ b and y ∈ Rk with AT y = c, y ≥ 0 and bT y = cTx. Let x be any
feasible point for the LP, so we have Ax ≤ b. Then

z(x) = c0 + cTx = c0 + bT y , since bT y = cTx,
= c0 + yT b ≥ c0 + yTAx , since y ≥ 0 and Ax ≤ b,
= c0 + (AT y)x = c0 + cTx , since AT y = c,
= z(x) .

Thus z(x) ≥ z(x) for every feasible point x, in other words x is an optimal solution for the LP.



3: Consider the LP where we maximize z = c0 + cTx for x ∈ R5 subject to the constraints Ax = b and x ≥ 0,
where

c0 = 1 , c =
(
2,−3, 1, 4,−2

)T
, A =

 1 −1 1 0 1
1 2 1 −3 −2
2 1 1 −1 −4

 , b =

 3
−6
−1

 .

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.

Solution: First we solve Ax = b. We have

(
A
∣∣b) =

 1 −1 1 0 1
1 2 1 −3 −2
2 1 1 −1 −4

∣∣∣∣∣∣
3
−6
−1

 ∼
 1 −1 1 0 1

0 3 0 −3 −3
0 3 −1 −1 −6

∣∣∣∣∣∣
3
−9
−7


∼

 1 0 1 −1 0
0 1 0 −1 −1
0 0 1 −2 3

∣∣∣∣∣∣
0
−3
−2

 ∼
 1 0 0 1 −3

0 1 0 −1 −1
0 0 1 −2 3

∣∣∣∣∣∣
2
−3
−2

 .

The solution to Ax = b is given by x = p + su + tv where p =
(
2,−3,−2, 0, 0

)T
, u =

(
− 1, 1, 2, 1, 0

)T
and

v =
(
3, 1,−3, 0, 1

)T
. We must maximize

z = c0 + cTx = (c0 + cT p) + (cTu)s + (cT v)t = 12 + s− 2t

subject to the constraints x1 ≥ 0, x2 ≥ 0, · · · , x5 ≥ 0 which we rewrite as −s+3t ≥ −2, s+t ≥ 3, 2s−3t ≥ 2,
s ≥ 0 and t ≥ 0. We draw a picture of the set of points (s, t) which satisfy these constraints (outlined in
blue) along with some of the level curves z = constant (shown in orange).

t

z = 13
z = 14

t

We see that the LP is unbounded. One feasible point is given by (s, t) = (3, 1), that is the point

x = p + 3u + v = (2, 1, 1, 3, 1) .

From the point given by (s, t) = (3, 1), we can move in the direction of the vector (s, t) = (3, 1) and remain
in the feasible set with the value of z increasing arbitrarily high, so a certificate of unfeasibility is given by
the vector

y = 3u + v = (0, 4, 3, 3, 1) .

Verify that for x = (2, 1, 1, 3, 1)T and y = (0, 4, 3, 3, 1)T we have Ax = b, x ≥ 0, Ay = 0, y ≥ 0 and
cT y = 1 > 0 so that x and y constitute a certificate of unboundedness for the LP.



4: Consider the LP where we maximize z = c0 + cTx for x ∈ R5 subject to Ax = b and x ≥ 0, where

c0 = 4 , c =
(
1, 2, 1,−1, 3

)T
, A =

 1 2 −1 6 1
2 1 1 0 −4
2 3 1 2 −2

 , b =

 3
−3
−1

 .

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.

Solution: First we solve Ax = b. We have

(
A
∣∣b) =

 1 2 −1 6 1
2 1 1 0 −4
2 3 1 2 −2

∣∣∣∣∣∣
3
−3
−1

 ∼
 1 2 −1 6 1

0 3 −3 12 6
0 1 −3 10 4

∣∣∣∣∣∣
3
9
7


∼

 1 0 1 −2 −3
0 1 −1 4 2
0 0 −2 6 2

∣∣∣∣∣∣
−3

3
4

 ∼
 1 0 0 1 −2

0 1 0 1 1
0 0 1 −3 −1

∣∣∣∣∣∣
−1

1
−2

 .

The solution to Ax = b is given by x = p + su + tv where p = (−1, 1,−2, 0, 0)T , u = (−1,−1, 3, 1, 0)T and
v = (2,−1, 2, 0, 1)T . The constraints x1 ≥ 0, · · · , x5 ≥ 0 can be written as −s + 2t ≥ 1, −s − t ≥ −1,
3s + t ≥ 2, s ≥ 0 and t ≥ 0. We draw a picture to help find the set of points (s, t) which satisfy these
constraints. The lines −s + 2t = 1, −s− t = −1 and 3s + t = 2 are shown in grey.

t

s

We see that there are no points (s, t) which satisfy the constraints, so the LP is unfeasible. A certificate of
unfeasibility, is given by a vector y with Aty ≥ 0 and bT y < 0. We shall find y with AT y ≥ 0 and bT y = −1.
First we solve bT y = −1, that is (3,−3,−1)(y1, y2, y3)T = −1. The solution is given by y3 = 1 + 3y1 − 3y2,
that is y = p′ + su′ + tv′ where p′ = (0, 0, 1)T , u′ = (1, 0, 3)T and v′ = (0, 1,−3)T . This gives

AT y =


1 2 2
2 1 3
−1 1 1

6 0 2
1 −4 −2


 0

0
1

+ s

 1
0
3

+ t

 0
1
−3

 =


2
3
1
2
−2

+ s


7
11
2
12
−5

+ t


−4
−8
−2
−6

2

 .

The condition that AT y ≥ 0 gives 7s−4t ≥ −2, 11s−8t ≥ −3, 2s−2t ≥ −1, 12s−6t ≥ −2 and −5s+2t ≥ 2.
We draw a picture of the set of points (s, t) which satisfy these conditions (shown outlined in blue, bounded
by the two lines 12s− 6t = −2 and −5s + 2t = 2).

t

s

We see that one solution is given by (s, t) = (−2,−4) corresponding to y = p′ − 2u′ − 4v′ = (−2,−4, 7)T .
Verify that AT y = (4, 13, 5, 2, 0)T ≥ 0 and that bT y = −1 < 0 to show that y is a certificate of unfeasibility.



5: Consider the LP where we maximize z = c0 + cTx for x ∈ R5 subject to Ax = b and x ≥ 0, where

c0 = 2 , c =
(
− 1, 1, 1,−2, 1

)T
, A =

 1 1 0 2 1
2 0 1 1 −1
−1 −1 1 −1 0

 , b =

 3
1
2

 .

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.

Solution: First we solve Ax = b. We have

(
A
∣∣b) =

 1 1 0 2 1
2 0 1 1 −1
−1 −1 1 −1 0

∣∣∣∣∣∣
3
1
2

 ∼
 1 1 0 2 1

0 2 −1 3 3
0 0 1 1 1

∣∣∣∣∣∣
3
5
5


∼

 1 0 1
2

1
2 −

1
2

0 1 − 1
2

3
2

3
2

0 0 1 1 1

∣∣∣∣∣∣
1
2
5
2

5

 ∼
 1 0 0 0 −1

0 1 0 2 2
0 0 1 1 1

∣∣∣∣∣∣
−2

5
5

 .

The solution to Ax = b is given by x = p + su + tv where p = (−2, 5, 5, 0, 0)T , u = (0,−2,−1, 1, 0)T and
v = (1,−2,−1, 0, 1)T . We need to maximize z = (c0 + cT p) + (cTu)s + (cT v)t = 14− 6s− 3t subject to the
constraints x1 ≥ 0, · · · , x5 ≥ 0 which we can write as t ≥ 2, −2s − 2t ≥ −5, −s − t ≥ −5, s ≥ 0 and t ≥ 0,
or equivalently t ≥ 2, s + t ≤ 5

2 , s ≥ 0
(
we can ignore the constraint t ≥ 0 since we have t ≥ 2 and we can

ignore the constraint x+ y ≤ 5 since we have x+ y ≤ 5
2

)
. We draw a picture of the set of points (s, t) which

satisfy these constraints (outlined in blue) along with the level sets z = min and z = max (shown in orange).
t

s

zmax = 8 zmin = 5

We see that the maximum value of z is zmax = 8 and it occurs when (s, t) = (0, 2), that is at the point

x = p + 0u + 2v = (0, 1, 3, 0, 2)T .

A certificate of optimality for x is given by a vector y ∈ R3 such that AT y ≥ c and bT y = cTx. First we
solve the equation bT y = cTx, that is 3y1 + y2 + 2y3 = 6. The solution is given by y2 = 6− 3y1 − 2y3, that
is by y = p′ + su′ + tv′ where p′ = (0, 6, 0)T , u′ = (1,−3, 0)T and v′ = (0,−2, 1)T . Then we have

AT y =


1 2 −1
1 0 −1
0 1 1
2 1 −1
1 −1 0


 0

6
0

+ s

 1
−3

0

+ t

 0
−2

1

 =


12
0
6
6
−6

+ s


−5

1
−3
−1

4

+ t


−5
−1
−1
−3

2

 .

To get AT y ≥ c we need −5s − 5t ≥ −13, s − t ≥ 1, −3s − t ≥ −5, −s − 3t ≥ −8 and 4s + 2t ≥ 7, or
equivalently s + t ≤ 13

5 , s − t ≥ 1, 3s + t ≤ 5, s + 3t ≤ 8 and 2s + t ≥ 7
2 . We draw a picture of the set of

points (s, t) which satisfy these constraints.
t

s

The unique solution is given by (s, t) =
(
3
2 ,

1
2

)
, that is y = p′ + 3

2u
′ + 1

2v
′ =

(
3
2 ,

1
2 ,

1
2

)T
. Verify that Ax = b,

x ≥ 0, AT y = (2, 1, 1, 3, 1)T ≥ c and bT y = 6 = cTx so that this vector y is indeed a certificate of optimality
for the point x.


