CO 250 Intro to Optimization, Solutions to Assignment 1

1: Maximize and minimize z = ¢Lz for z € R® subject to Ax = b and x > 0 where

. 1 2 1 -2 -3 3

c=(3,1,-2,-53) ,A=(1 3 2 =2 5| ,b=|[5

31 -1-5 2 4

Solution: We solve Ax = b. We have
1 2 1 -2 -3|3 1 2 1-2 =313
(Ap)={1 3 2 =2 5|5 |~(0 1 1 0 -2 |2
31 -1-5 214 05 4—-1-111|5
1 0-1-2 1/[-1 1 0 0-1 214
~(0o1 1 0 —-2|2|~]l010-1-3]|-3
00 1 1 115 001 1 115
(

so the solution is x = p + su + tv where p = (4,-3,5,0,0)7, u = (1,1,-1,1,0)T and v = (-2,3,-1,0,1)7.

We must optimize
z=clz=ce(ptsuttv)=(cep)+(ceu)s+(cev)t=—1+s+3t

subject to the constraints 1 > 0,5 > 0, -+, xg > 0 which we rewrite as s—2t > —4, s+3t > 3, —s—t > —5,
s> 0and t > 0. We draw a picture of the set of points (s,t) which satisfy these constraints (outlined in
blue) along with the level curves z = min and z = max (shown in orange).

t

z=10
s
z=2

We see that the minimum value is z = 2, which occurs along the line segment from (s,t) = (0,1) to (3,0),
that is the line segment from x = (2,0,4,0,1)7 to (7,0,2,3,0)7, and the maximum value is z = 10, which
occurs when (s,t) = (2,3), that is when = = (4,8,0,2,3)7.



2: Maximize and minimize z = ¢Z'z for x € Z* (this is an IP) subject to Az = b, x > 0 where

T 1 2 0 -2 3
c=(1,2,-1,0) ,A_<3 5 9 0) ,b—<5>.
Solution: First we solve Az = b. We have
1 2 0-21-3 1 2 0 -2]-3
(A|b)<3 2 2 0 ' 5)”(0 4 -2 6‘14)
1 2 0 —2]-3 10 1 1
0 2-1-3|-7 0 1-3-3

so the solution is x = p + su + tv where p = (4, —Z,O7O)T, U = (— 1, 1,0)T and v = (— 1,20, 1)T. We
must optimize

z=cle=ce(ptsuttv)=(cep)+(ceu)s+(cev)t=—-3—s+2t

subject to the constraints x; > 0,22 > 0,23 > 0,24 > 0, that is —s —t > 4, %5+ %t > %, s>0andt>0.
The set of all points (s,t) with s,¢ € R which satisfy these constraints is shown below, outlined in green.
But we also need to have z € Z. Since x3 = s and x4 = t we need s,t € Z, and in this case we also have
r1 € Z since x1 =4 — s —t. Since x9 = —% + %s—l— %t, we see that x5 € Z when s+t is odd. Thus v € Z
when s,¢t € Z with s +t¢ odd. The only two such pairs (s,¢) which satisfy the constraints are the points
(s,t) =(0,3) and (s,t) = (1,2). Thus the maximum value is z = 3, which occurs when (s,t) = (0, 3), that is
= (1,1,0,3)T, and the minimum value is z = 0 which occurs when (s,t) = (1,2), that is z = (1,0,1,2)%.

t




3: Maximize and minimize w = x + y + 2 for (z,y,2)7 € R? subject to the non-linear constraints
r4+2y—22=1,3x+1y> +22—62<4, 3z +5y—2°>>8.
Solution: First we solve the equality x + 2y — 2z = 1 to get x = 1 — 2y + 2z with y, z € R. We put this into
the objective function to get
w=x+y+z2=1-2y+2z2+y+2=1—-y+3z2
and into the inequalities to get
3r 4yt +22—62<4 «—= 3—6y+62+y>+22-62<4
= P by +22<1 = (y—-3)2+22<10
3245y —22>8 «— 3—6y+62+5y—22>8
—= 22 —624+y< -5 = (2—3)2+y§9.
We draw a picture of the set of points (y,z) which satisfy these inequalities, outlined in blue (note that
(y — 3)2 + 22 = 10 is the equation of the circle of radius v/10 centred at (3,0), and (z —3)2 +y < 9 is

the equation of the standard-shaped parabola opening to the left with vertex at (4, 3)), along with the level
curves w = min and w = max, shown in orange.

z

To find the maximum and minimum values of w, we determine the points along the parabola and the circle
at which the slope of the tangent line is equal to % It is clear that the tangent to the circle at the point
(2,3) will have slope % (because the tangent is perpendicular to the radius), and it is clear that the tangent

to the parabola at the point (%, %) will have slope % (since the tangent to the standard parabola y = 22 at
the point g%, 2) has slope 3). When (y, z) = (2,3) we have w = 1 — y + 3z = 8 and when (y,z) = (1,3) we
have w = 2. Thus the maximum is w = 8 which occurs at (z,y, 2) = (3,2,3) and the minimum is w = 12

which occurs at (z,y,z) = (%’ g’ %)



4: Let A, B,C,u,v > 0.
(a) Suppose we wish to maximize z = ¢’z for € R™ subject to the condition that = > 0 and either Az > u
or Bx > v. Show that this problem can be formulated as an IP.

Solution: We introduce a binary variable ¢, that is an integer variable ¢ € Z with the constraints ¢ > 0 and
t <1 so that t € {0,1}. We wish to have Az > « when ¢ = 0 and Bz > v when ¢ = 1, so we include the
constraints

Az > (1 —t)u, Bz > tv.

Note that when ¢ = 0, the constraint Az > (1 — t)u becomes Az > u and the constraint Bx > tv becomes
Bz > 0, which is satisfied automatically since B > 0 and z > 0. Similarly, when ¢ = 1 the constraint
Az > (1 — t)u is satisfied automatically and the constraint Bx > tv becomes Bx > v. Thus the given
problem is equivalent to the IP where we maximize z = ¢’ « for x € R™ and ¢ € Z, subject to the constraints

Az > (1—tu, By>tv, t>0,t<1.

These constraints can also be written as

A u U
B —v T v
o ()=
0 -1 —1

(b) Suppose that we wish to maximize z = ¢!’z for z € R™ subject to the condition that z > 0 and at least
two of the three matrix inequalities Az > u, Bx > v and Cx > w are satisfied. Show that this problem can
be formulated as an IP.

Solution: We introduce binary variables r, s,t € {0,1}. We would like to have Ax > u when r =1, Bx > v
when s = 1 and Cx > w when ¢t = 1, and we would like at least two of the variables r, s,t to be equal to 1,
so we include the constraints

Ar>ru, Bx>sv, Cx>tw, r+s+t>2.

Note that when r = 0, the constraint Ax = ru is satisfied automatically since A > 0 and x > 0. Similarly,
when s = 0 the constraint Bx > sv is automatically satisfied, and when ¢ = 0 the constraint Cx > tw is
automatically satisfied. Thus the given problem is equivalent to the IP where we maximize z = ¢’z for
xz € R™ and r,s,t € Z subject to

Ar>ru, Bx>sv, Cx>tw, r,s,t >0, r,s,t <1, r+s+t>2.



5: In Conway’s game of life, we are given an n x n grid with cells labeled by pairs (k,1) with 1 < k < n and
1 <1 < n. Each cell has at most 8 neighbouring cells, where the neighbours of the cell (k,[) are the cells
(k+1,0),(k,1+1),(k£1,l+1). Each cell can be either alive or dead. The initial set of living cells is denoted
by L = Lg. At each stage in the game, the set of living cells changes giving sets Lo, L1, Lo, - --. The set L, 11
is determined from the set L,, as follows. For each cell (k,1),

if there is at most 1 neighbour of the cell (k,) which lies in L,, then (k,1) € L,11,
if there are exactly 2 neighbours of (k,1) in L,, then (k1) € L1 < (k,l) € Ly,
if there are exactly 3 neighbours of (k,1) in L,, then (k,1) € L,+1, and

if there are at least 4 neighbours of (k,!) in L,, then (k,1) ¢ L, 1.

Suppose that we are given a positive integer n and we wish to find the largest possible size for a set L = L

with the property that Ly = Ly = Ly = ---. Show that this problem can be formulated as an IP.
Solution: We first note that if Ly = L; then we also have Ly = Ly because Lo is obtained from L; by the
same rules used to obtain L from Lg. Inductively, if Ly = L, then we have Ly = Ly = Ly = ---. Thus the

given problem is to find the largest possible size for a set Ly with the property that Ly = L.
Let S = {1,2,---,n} and write 5* = {(i,j)|i € S,j € S}. We introduce a binary variable x; ; for each
pair (i,) € S2. The initial set Ly C S? of living cells corresponds to the vector o with entries 24,5 with

1if (i,5) € L
X =
7 0if (4,5) ¢ L.
Under this correspondence, the number of elements in Lg is equal to
|L0| = Z Lij -
(4,7)€8?
We wish to maximize |Lo| subject to the condition that Ly = L;. For (k,I) € S?, let N(k,l) denote the set
of neighbours of (k,1). In order to have Ly = Ly, we need the following to hold for each (k,1) € S2.
If (k,1) € Lo we require that (k,[) has either 2 or 3 neighbours in Ly, that is Z x;; €{2,3},
(4,§)EN (k1)
If (k,1) ¢ Lo then (k,l) cannot have exactly 3 neighbours in Ly, that is Z Tij # 3.

(4,4)EN(k,1)
These constraints are equivalent to

If 4, =1 then ( Z Zi; > 2 and Z i < 3)

(i,5)EN (k1) (4,5)EN (k,1)
If 2, ; = 0 then ( Z ;5 <2 or Z Tij > 4) .
(i,5)EN (k,1) (i,5)EN(K,l)

These are equivalent to
Z Tij > 2T, Z Tij < 8—=DdTpy , ( Z ;5 <2+6xp,; or Z Tij > 4—4%16,1)
(,5)EN (k1) (i,5)EN (k1) (:,5)EN (k1) (4,9)EN (k,1)

because for example if x;; = 1 then the first two conditions become )z, ; > 2 and ) x; ; < 8 and the last
two conditions become Zm” < 8 and Zx” > 0 which are both automatically satisfied. Finally, to deal
with the disjunction, we introduce another binary variable ¢, and we use the conditions

Z T j—2x, >0, Z T j+oxE; <8, Z ;5 —6x8,; < 2+6t, Z Ty j+4 x> 41
(4,7)EN (k,1) (1,4)EN (k1) (1,7)EN(k,1) (4,)EN (k1)

so that for example when ¢ = 0 the third condition becomes > z;; < 2 + 6 xy; while the fourth becomes
> x;; > 0 which is automatically satisfied.



