
CO 250 Intro to Optimization, Solutions to Assignment 1

1: Maximize and minimize z = cTx for x ∈ R5 subject to Ax = b and x ≥ 0 where

c =
(
3, 1,−2,−5, 3

)T
, A =

 1 2 1 −2 −3
1 3 2 −2 −5
3 1 −1 −5 2

 , b =

 3
5
4

 .

Solution: We solve Ax = b. We have

(
A
∣∣b) =

 1 2 1 −2 −3
1 3 2 −2 −5
3 1 −1 −5 2

∣∣∣∣∣∣
3
5
4

 ∼
 1 2 1 −2 −3

0 1 1 0 −2
0 5 4 −1 −11

∣∣∣∣∣∣
3
2
5


∼

 1 0 −1 −2 1
0 1 1 0 −2
0 0 1 1 1

∣∣∣∣∣∣
−1

2
5

 ∼
 1 0 0 −1 2

0 1 0 −1 −3
0 0 1 1 1

∣∣∣∣∣∣
4
−3

5


so the solution is x = p + su + tv where p = (4,−3, 5, 0, 0)T , u = (1, 1,−1, 1, 0)T and v = (−2, 3,−1, 0, 1)T .
We must optimize

z = cTx = c. (p + su + tv) = (c. p) + (c.u)s + (c. v)t = −1 + s + 3t

subject to the constraints x1 ≥ 0, x2 ≥ 0, · · · , x6 ≥ 0 which we rewrite as s−2t ≥ −4, s+3t ≥ 3, −s−t ≥ −5,
s ≥ 0 and t ≥ 0. We draw a picture of the set of points (s, t) which satisfy these constraints (outlined in
blue) along with the level curves z = min and z = max (shown in orange).

t

z = 10

s

z = 2

We see that the minimum value is z = 2, which occurs along the line segment from (s, t) = (0, 1) to (3, 0),
that is the line segment from x = (2, 0, 4, 0, 1)T to (7, 0, 2, 3, 0)T , and the maximum value is z = 10, which
occurs when (s, t) = (2, 3), that is when x = (4, 8, 0, 2, 3)T .



2: Maximize and minimize z = cTx for x ∈ Z4 (this is an IP) subject to Ax = b, x ≥ 0 where

c =
(
1, 2,−1, 0

)T
, A =

(
1 2 0 −2
3 2 2 0

)
, b =

(
−3

5

)
.

Solution: First we solve Ax = b. We have(
A
∣∣b) =

(
1 2 0 −2
3 2 2 0

∣∣∣∣−3
5

)
∼
(

1 2 0 −2
0 4 −2 −6

∣∣∣∣ −3
−14

)
∼
(

1 2 0 −2
0 2 −1 −3

∣∣∣∣−3
−7

)
∼
(

1 0 1 1
0 1 − 1

2 −
3
2

∣∣∣∣ 4
− 7

2

)
so the solution is x = p + su + tv where p =

(
4,− 7

2 , 0, 0
)T

, u =
(
− 1, 1

2 , 1, 0
)T

and v =
(
− 1, 3

2 , 0, 1
)T

. We
must optimize

z = cTx = c. (p + su + tv) = (c. p) + (c.u)s + (c. v)t = −3− s + 2t

subject to the constraints x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, that is −s− t ≥ 4, 1
2 s + 3

2 t ≥
7
2 , s ≥ 0 and t ≥ 0.

The set of all points (s, t) with s, t ∈ R which satisfy these constraints is shown below, outlined in green.
But we also need to have x ∈ Z. Since x3 = s and x4 = t we need s, t ∈ Z, and in this case we also have
x1 ∈ Z since x1 = 4 − s − t. Since x2 = − 7

2 + 1
2s + 3

2 t, we see that x2 ∈ Z when s + t is odd. Thus x ∈ Z
when s, t ∈ Z with s + t odd. The only two such pairs (s, t) which satisfy the constraints are the points
(s, t) = (0, 3) and (s, t) = (1, 2). Thus the maximum value is z = 3, which occurs when (s, t) = (0, 3), that is
x = (1, 1, 0, 3)T , and the minimum value is z = 0 which occurs when (s, t) = (1, 2), that is x = (1, 0, 1, 2)T .

t
z = 3

z = 0

s



3: Maximize and minimize w = x + y + z for (x, y, z)T ∈ R3 subject to the non-linear constraints

x + 2y − 2z = 1 , 3x + y2 + z2 − 6z ≤ 4 , 3x + 5y − z2 ≥ 8 .

Solution: First we solve the equality x + 2y − 2z = 1 to get x = 1− 2y + 2z with y, z ∈ R. We put this into
the objective function to get

w = x + y + z = 1− 2y + 2z + y + z = 1− y + 3z

and into the inequalities to get

3x + y2 + z2 − 6z ≤ 4 ⇐⇒ 3− 6y + 6z + y2 + z2 − 6z ≤ 4

⇐⇒ y2 − 6y + z2 ≤ 1 ⇐⇒ (y − 3)2 + z2 ≤ 10

3x + 5y − z2 ≥ 8 ⇐⇒ 3− 6y + 6z + 5y − z2 ≥ 8

⇐⇒ z2 − 6z + y ≤ −5 ⇐⇒ (z − 3)2 + y ≤ 9 .

We draw a picture of the set of points (y, z) which satisfy these inequalities, outlined in blue
(
note that

(y − 3)2 + z2 = 10 is the equation of the circle of radius
√

10 centred at (3, 0), and (z − 3)2 + y ≤ 9 is
the equation of the standard-shaped parabola opening to the left with vertex at (4, 3)

)
, along with the level

curves w = min and w = max, shown in orange.

z

y

To find the maximum and minimum values of w, we determine the points along the parabola and the circle
at which the slope of the tangent line is equal to 1

3 . It is clear that the tangent to the circle at the point
(2, 3) will have slope 1

3 (because the tangent is perpendicular to the radius), and it is clear that the tangent
to the parabola at the point

(
7
4 ,

3
2

)
will have slope 1

3 (since the tangent to the standard parabola y = x2 at

the point
(
3
2 ,

9
4

)
has slope 3). When (y, z) = (2, 3) we have w = 1− y + 3z = 8 and when (y, z) =

(
7
4 ,

3
2

)
we

have w = 15
4 . Thus the maximum is w = 8 which occurs at (x, y, z) = (3, 2, 3) and the minimum is w = 15

4
which occurs at (x, y, z) =

(
1
2 ,

7
4 ,

3
2

)
.



4: Let A,B,C, u, v ≥ 0.

(a) Suppose we wish to maximize z = cTx for x ∈ Rn subject to the condition that x ≥ 0 and either Ax ≥ u
or Bx ≥ v. Show that this problem can be formulated as an IP.

Solution: We introduce a binary variable t, that is an integer variable t ∈ Z with the constraints t ≥ 0 and
t ≤ 1 so that t ∈ {0, 1}. We wish to have Ax ≥ u when t = 0 and Bx ≥ v when t = 1, so we include the
constraints

Ax ≥ (1− t)u , Bx ≥ tv .

Note that when t = 0, the constraint Ax ≥ (1 − t)u becomes Ax ≥ u and the constraint Bx ≥ tv becomes
Bx ≥ 0, which is satisfied automatically since B ≥ 0 and x ≥ 0. Similarly, when t = 1 the constraint
Ax ≥ (1 − t)u is satisfied automatically and the constraint Bx ≥ tv becomes Bx ≥ v. Thus the given
problem is equivalent to the IP where we maximize z = cTx for x ∈ Rn and t ∈ Z, subject to the constraints

Ax ≥ (1− t)u , By ≥ tv , t ≥ 0 , t ≤ 1 .

These constraints can also be written as
A u
B −v
0 1
0 −1

(x
t

)
≥


u
v
0
−1

 .

(b) Suppose that we wish to maximize z = cTx for x ∈ Rn subject to the condition that x ≥ 0 and at least
two of the three matrix inequalities Ax ≥ u, Bx ≥ v and Cx ≥ w are satisfied. Show that this problem can
be formulated as an IP.

Solution: We introduce binary variables r, s, t ∈ {0, 1}. We would like to have Ax ≥ u when r = 1, Bx ≥ v
when s = 1 and Cx ≥ w when t = 1, and we would like at least two of the variables r, s, t to be equal to 1,
so we include the constraints

Ax ≥ ru , Bx ≥ sv , Cx ≥ tw , r + s + t ≥ 2 .

Note that when r = 0, the constraint Ax = ru is satisfied automatically since A ≥ 0 and x ≥ 0. Similarly,
when s = 0 the constraint Bx ≥ sv is automatically satisfied, and when t = 0 the constraint Cx ≥ tw is
automatically satisfied. Thus the given problem is equivalent to the IP where we maximize z = cTx for
x ∈ Rn and r, s, t ∈ Z subject to

Ax ≥ ru , Bx ≥ sv , Cx ≥ tw , r, s, t ≥ 0 , r, s, t ≤ 1 , r + s + t ≥ 2 .



5: In Conway’s game of life, we are given an n × n grid with cells labeled by pairs (k, l) with 1 ≤ k ≤ n and
1 ≤ l ≤ n. Each cell has at most 8 neighbouring cells, where the neighbours of the cell (k, l) are the cells
(k±1, l), (k, l±1), (k±1, l±1). Each cell can be either alive or dead. The initial set of living cells is denoted
by L = L0. At each stage in the game, the set of living cells changes giving sets L0, L1, L2, · · ·. The set Ln+1

is determined from the set Ln as follows. For each cell (k, l),

if there is at most 1 neighbour of the cell (k, l) which lies in Ln then (k, l) /∈ Ln+1,
if there are exactly 2 neighbours of (k, l) in Ln then (k, l) ∈ Ln+1 ⇐⇒ (k, l) ∈ Ln,
if there are exactly 3 neighbours of (k, l) in Ln then (k, l) ∈ Ln+1, and
if there are at least 4 neighbours of (k, l) in Ln then (k, l) /∈ Ln+1.

Suppose that we are given a positive integer n and we wish to find the largest possible size for a set L = L0

with the property that L0 = L1 = L2 = · · ·. Show that this problem can be formulated as an IP.

Solution: We first note that if L0 = L1 then we also have L1 = L2 because L2 is obtained from L1 by the
same rules used to obtain L1 from L0. Inductively, if L0 = L1 then we have L0 = L1 = L2 = · · ·. Thus the
given problem is to find the largest possible size for a set L0 with the property that L0 = L1.

Let S = {1, 2, · · · , n} and write S2 =
{

(i, j)
∣∣i ∈ S, j ∈ S

}
. We introduce a binary variable xi,j for each

pair (i, j) ∈ S2. The initial set L0 ⊆ S2 of living cells corresponds to the vector x with entries xi,j with

xi,j =

{
1 if (i, j) ∈ L

0 if (i, j) /∈ L.

Under this correspondence, the number of elements in L0 is equal to

|L0| =
∑

(i,j)∈S2

xi,j .

We wish to maximize |L0| subject to the condition that L0 = L1. For (k, l) ∈ S2, let N(k, l) denote the set
of neighbours of (k, l). In order to have L0 = L1, we need the following to hold for each (k, l) ∈ S2.

If (k, l) ∈ L0 we require that (k, l) has either 2 or 3 neighbours in L0, that is
∑

(i,j)∈N(k,l)

xi,j ∈ {2, 3} ,

If (k, l) /∈ L0 then (k, l) cannot have exactly 3 neighbours in L0, that is
∑

(i,j)∈N(k,l)

xi,j 6= 3 .

These constraints are equivalent to

If xk,l = 1 then
( ∑

(i,j)∈N(k,l)

xi,j ≥ 2 and
∑

(i,j)∈N(k,l)

xi,j ≤ 3
)

If xk,l = 0 then
( ∑

(i,j)∈N(k,l)

xi,j ≤ 2 or
∑

(i,j)∈N(k,l)

xi,j ≥ 4
)
.

These are equivalent to∑
(i,j)∈N(k,l)

xi,j ≥ 2xk,l ,
∑

(i,j)∈N(k,l)

xi,j ≤ 8− 5xk,l ,
( ∑

(i,j)∈N(k,l)

xi,j ≤ 2 + 6xk,l or
∑

(i,j)∈N(k,l)

xi,j ≥ 4− 4xk,l

)
because for example if xk,l = 1 then the first two conditions become

∑
xi,j ≥ 2 and

∑
xi,j ≤ 8 and the last

two conditions become
∑

xi,j ≤ 8 and
∑

xi,j ≥ 0 which are both automatically satisfied. Finally, to deal
with the disjunction, we introduce another binary variable t, and we use the conditions∑
(i,j)∈N(k,l)

xi,j−2xk,l ≥ 0 ,
∑

(i,j)∈N(k,l)

xi,j+5xk,l ≤ 8 ,
∑

(i,j)∈N(k,l)

xi,j−6xk,l ≤ 2+6t ,
∑

(i,j)∈N(k,l)

xi,j+4xk,l ≥ 4 t

so that for example when t = 0 the third condition becomes
∑

xi,j ≤ 2 + 6xk,l while the fourth becomes∑
xi,j ≥ 0 which is automatically satisfied.


