

CO 250 Intro to Optimization, Solutions to Assignment 1

1: Maximize and minimize $z = c^T x$ for $x \in \mathbf{R}^5$ subject to $Ax = b$ and $x \geq 0$ where

$$c = (3, 1, -2, -5, 3)^T, \quad A = \begin{pmatrix} 1 & 2 & 1 & -2 & -3 \\ 1 & 3 & 2 & -2 & -5 \\ 3 & 1 & -1 & -5 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}.$$

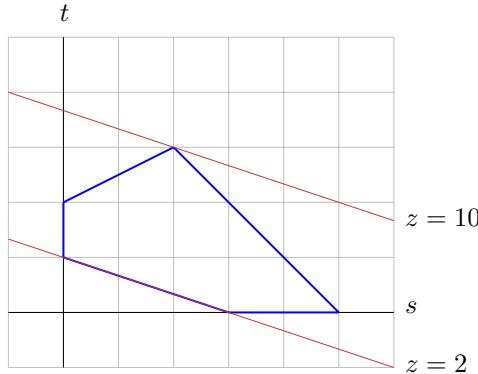
Solution: We solve $Ax = b$. We have

$$\begin{aligned} (A|b) &= \left(\begin{array}{ccccc|c} 1 & 2 & 1 & -2 & -3 & 3 \\ 1 & 3 & 2 & -2 & -5 & 5 \\ 3 & 1 & -1 & -5 & 2 & 4 \end{array} \right) \sim \left(\begin{array}{ccccc|c} 1 & 2 & 1 & -2 & -3 & 3 \\ 0 & 1 & 1 & 0 & -2 & 2 \\ 0 & 5 & 4 & -1 & -11 & 5 \end{array} \right) \\ &\sim \left(\begin{array}{ccccc|c} 1 & 0 & -1 & -2 & 1 & -1 \\ 0 & 1 & 1 & 0 & -2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 5 \end{array} \right) \sim \left(\begin{array}{ccccc|c} 1 & 0 & 0 & -1 & 2 & 4 \\ 0 & 1 & 0 & -1 & -3 & -3 \\ 0 & 0 & 1 & 1 & 1 & 5 \end{array} \right) \end{aligned}$$

so the solution is $x = p + su + tv$ where $p = (4, -3, 5, 0, 0)^T$, $u = (1, 1, -1, 1, 0)^T$ and $v = (-2, 3, -1, 0, 1)^T$. We must optimize

$$z = c^T x = c \cdot (p + su + tv) = (c \cdot p) + (c \cdot u)s + (c \cdot v)t = -1 + s + 3t$$

subject to the constraints $x_1 \geq 0, x_2 \geq 0, \dots, x_6 \geq 0$ which we rewrite as $s - 2t \geq -4, s + 3t \geq 3, -s - t \geq -5, s \geq 0$ and $t \geq 0$. We draw a picture of the set of points (s, t) which satisfy these constraints (outlined in blue) along with the level curves $z = \min$ and $z = \max$ (shown in orange).



We see that the minimum value is $z = 2$, which occurs along the line segment from $(s, t) = (0, 1)$ to $(3, 0)$, that is the line segment from $x = (2, 0, 4, 0, 1)^T$ to $(7, 0, 2, 3, 0)^T$, and the maximum value is $z = 10$, which occurs when $(s, t) = (2, 3)$, that is when $x = (4, 8, 0, 2, 3)^T$.

2: Maximize and minimize $z = c^T x$ for $x \in \mathbf{Z}^4$ (this is an IP) subject to $Ax = b$, $x \geq 0$ where

$$c = (1, 2, -1, 0)^T, \quad A = \begin{pmatrix} 1 & 2 & 0 & -2 \\ 3 & 2 & 2 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} -3 \\ 5 \end{pmatrix}.$$

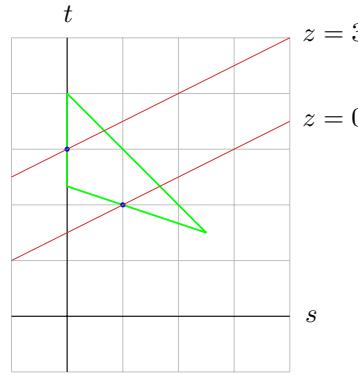
Solution: First we solve $Ax = b$. We have

$$\begin{aligned} (A|b) &= \left(\begin{array}{cccc|c} 1 & 2 & 0 & -2 & -3 \\ 3 & 2 & 2 & 0 & 5 \end{array} \right) \sim \left(\begin{array}{cccc|c} 1 & 2 & 0 & -2 & -3 \\ 0 & 4 & -2 & -6 & -14 \end{array} \right) \\ &\sim \left(\begin{array}{cccc|c} 1 & 2 & 0 & -2 & -3 \\ 0 & 2 & -1 & -3 & -7 \end{array} \right) \sim \left(\begin{array}{cccc|c} 1 & 0 & 1 & 1 & 4 \\ 0 & 1 & -\frac{1}{2} & -\frac{3}{2} & -\frac{7}{2} \end{array} \right) \end{aligned}$$

so the solution is $x = p + su + tv$ where $p = (4, -\frac{7}{2}, 0, 0)^T$, $u = (-1, \frac{1}{2}, 1, 0)^T$ and $v = (-1, \frac{3}{2}, 0, 1)^T$. We must optimize

$$z = c^T x = c \cdot (p + su + tv) = (c \cdot p) + (c \cdot u)s + (c \cdot v)t = -3 - s + 2t$$

subject to the constraints $x_1 \geq 0, x_2 \geq 0, x_3 \geq 0, x_4 \geq 0$, that is $-s - t \geq 4$, $\frac{1}{2}s + \frac{3}{2}t \geq \frac{7}{2}$, $s \geq 0$ and $t \geq 0$. The set of all points (s, t) with $s, t \in \mathbf{R}$ which satisfy these constraints is shown below, outlined in green. But we also need to have $x \in \mathbf{Z}$. Since $x_3 = s$ and $x_4 = t$ we need $s, t \in \mathbf{Z}$, and in this case we also have $x_1 \in \mathbf{Z}$ since $x_1 = 4 - s - t$. Since $x_2 = -\frac{7}{2} + \frac{1}{2}s + \frac{3}{2}t$, we see that $x_2 \in \mathbf{Z}$ when $s + t$ is odd. Thus $x \in \mathbf{Z}$ when $s, t \in \mathbf{Z}$ with $s + t$ odd. The only two such pairs (s, t) which satisfy the constraints are the points $(s, t) = (0, 3)$ and $(s, t) = (1, 2)$. Thus the maximum value is $z = 3$, which occurs when $(s, t) = (0, 3)$, that is $x = (1, 1, 0, 3)^T$, and the minimum value is $z = 0$ which occurs when $(s, t) = (1, 2)$, that is $x = (1, 0, 1, 2)^T$.



3: Maximize and minimize $w = x + y + z$ for $(x, y, z)^T \in \mathbf{R}^3$ subject to the non-linear constraints

$$x + 2y - 2z = 1, \quad 3x + y^2 + z^2 - 6z \leq 4, \quad 3x + 5y - z^2 \geq 8.$$

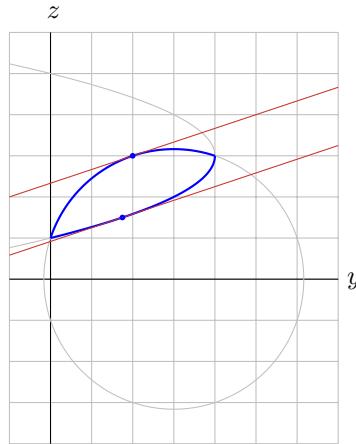
Solution: First we solve the equality $x + 2y - 2z = 1$ to get $x = 1 - 2y + 2z$ with $y, z \in \mathbf{R}$. We put this into the objective function to get

$$w = x + y + z = 1 - 2y + 2z + y + z = 1 - y + 3z$$

and into the inequalities to get

$$\begin{aligned} 3x + y^2 + z^2 - 6z \leq 4 &\iff 3 - 6y + 6z + y^2 + z^2 - 6z \leq 4 \\ &\iff y^2 - 6y + z^2 \leq 1 \iff (y - 3)^2 + z^2 \leq 10 \\ 3x + 5y - z^2 \geq 8 &\iff 3 - 6y + 6z + 5y - z^2 \geq 8 \\ &\iff z^2 - 6z + y \leq -5 \iff (z - 3)^2 + y \leq 9. \end{aligned}$$

We draw a picture of the set of points (y, z) which satisfy these inequalities, outlined in blue (note that $(y - 3)^2 + z^2 = 10$ is the equation of the circle of radius $\sqrt{10}$ centred at $(3, 0)$, and $(z - 3)^2 + y \leq 9$ is the equation of the standard-shaped parabola opening to the left with vertex at $(4, 3)$), along with the level curves $w = \min$ and $w = \max$, shown in orange.



To find the maximum and minimum values of w , we determine the points along the parabola and the circle at which the slope of the tangent line is equal to $\frac{1}{3}$. It is clear that the tangent to the circle at the point $(2, 3)$ will have slope $\frac{1}{3}$ (because the tangent is perpendicular to the radius), and it is clear that the tangent to the parabola at the point $(\frac{7}{4}, \frac{3}{2})$ will have slope $\frac{1}{3}$ (since the tangent to the standard parabola $y = x^2$ at the point $(\frac{3}{2}, \frac{9}{4})$ has slope 3). When $(y, z) = (2, 3)$ we have $w = 1 - y + 3z = 8$ and when $(y, z) = (\frac{7}{4}, \frac{3}{2})$ we have $w = \frac{15}{4}$. Thus the maximum is $w = 8$ which occurs at $(x, y, z) = (3, 2, 3)$ and the minimum is $w = \frac{15}{4}$ which occurs at $(x, y, z) = (\frac{1}{2}, \frac{7}{4}, \frac{3}{2})$.

4: Let $A, B, C, u, v \geq 0$.

(a) Suppose we wish to maximize $z = c^T x$ for $x \in \mathbf{R}^n$ subject to the condition that $x \geq 0$ and either $Ax \geq u$ or $Bx \geq v$. Show that this problem can be formulated as an IP.

Solution: We introduce a binary variable t , that is an integer variable $t \in \mathbf{Z}$ with the constraints $t \geq 0$ and $t \leq 1$ so that $t \in \{0, 1\}$. We wish to have $Ax \geq u$ when $t = 0$ and $Bx \geq v$ when $t = 1$, so we include the constraints

$$Ax \geq (1-t)u, \quad Bx \geq tv.$$

Note that when $t = 0$, the constraint $Ax \geq (1-t)u$ becomes $Ax \geq u$ and the constraint $Bx \geq tv$ becomes $Bx \geq 0$, which is satisfied automatically since $B \geq 0$ and $x \geq 0$. Similarly, when $t = 1$ the constraint $Ax \geq (1-t)u$ is satisfied automatically and the constraint $Bx \geq tv$ becomes $Bx \geq v$. Thus the given problem is equivalent to the IP where we maximize $z = c^T x$ for $x \in \mathbf{R}^n$ and $t \in \mathbf{Z}$, subject to the constraints

$$Ax \geq (1-t)u, \quad Bx \geq tv, \quad t \geq 0, \quad t \leq 1.$$

These constraints can also be written as

$$\begin{pmatrix} A & u \\ B & -v \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} \geq \begin{pmatrix} u \\ v \\ 0 \\ -1 \end{pmatrix}.$$

(b) Suppose that we wish to maximize $z = c^T x$ for $x \in \mathbf{R}^n$ subject to the condition that $x \geq 0$ and at least two of the three matrix inequalities $Ax \geq u$, $Bx \geq v$ and $Cx \geq w$ are satisfied. Show that this problem can be formulated as an IP.

Solution: We introduce binary variables $r, s, t \in \{0, 1\}$. We would like to have $Ax \geq u$ when $r = 1$, $Bx \geq v$ when $s = 1$ and $Cx \geq w$ when $t = 1$, and we would like at least two of the variables r, s, t to be equal to 1, so we include the constraints

$$Ax \geq ru, \quad Bx \geq sv, \quad Cx \geq tw, \quad r + s + t \geq 2.$$

Note that when $r = 0$, the constraint $Ax = ru$ is satisfied automatically since $A \geq 0$ and $x \geq 0$. Similarly, when $s = 0$ the constraint $Bx \geq sv$ is automatically satisfied, and when $t = 0$ the constraint $Cx \geq tw$ is automatically satisfied. Thus the given problem is equivalent to the IP where we maximize $z = c^T x$ for $x \in \mathbf{R}^n$ and $r, s, t \in \mathbf{Z}$ subject to

$$Ax \geq ru, \quad Bx \geq sv, \quad Cx \geq tw, \quad r, s, t \geq 0, \quad r, s, t \leq 1, \quad r + s + t \geq 2.$$

5: In Conway's game of life, we are given an $n \times n$ grid with cells labeled by pairs (k, l) with $1 \leq k \leq n$ and $1 \leq l \leq n$. Each cell has at most 8 neighbouring cells, where the neighbours of the cell (k, l) are the cells $(k \pm 1, l), (k, l \pm 1), (k \pm 1, l \pm 1)$. Each cell can be either alive or dead. The initial set of living cells is denoted by $L = L_0$. At each stage in the game, the set of living cells changes giving sets L_0, L_1, L_2, \dots . The set L_{n+1} is determined from the set L_n as follows. For each cell (k, l) ,

if there is at most 1 neighbour of the cell (k, l) which lies in L_n then $(k, l) \notin L_{n+1}$,
 if there are exactly 2 neighbours of (k, l) in L_n then $(k, l) \in L_{n+1} \iff (k, l) \in L_n$,
 if there are exactly 3 neighbours of (k, l) in L_n then $(k, l) \in L_{n+1}$, and
 if there are at least 4 neighbours of (k, l) in L_n then $(k, l) \notin L_{n+1}$.

Suppose that we are given a positive integer n and we wish to find the largest possible size for a set $L = L_0$ with the property that $L_0 = L_1 = L_2 = \dots$. Show that this problem can be formulated as an IP.

Solution: We first note that if $L_0 = L_1$ then we also have $L_1 = L_2$ because L_2 is obtained from L_1 by the same rules used to obtain L_1 from L_0 . Inductively, if $L_0 = L_1$ then we have $L_0 = L_1 = L_2 = \dots$. Thus the given problem is to find the largest possible size for a set L_0 with the property that $L_0 = L_1$.

Let $S = \{1, 2, \dots, n\}$ and write $S^2 = \{(i, j) \mid i \in S, j \in S\}$. We introduce a binary variable $x_{i,j}$ for each pair $(i, j) \in S^2$. The initial set $L_0 \subseteq S^2$ of living cells corresponds to the vector x with entries $x_{i,j}$ with

$$x_{i,j} = \begin{cases} 1 & \text{if } (i, j) \in L \\ 0 & \text{if } (i, j) \notin L \end{cases}$$

Under this correspondence, the number of elements in L_0 is equal to

$$|L_0| = \sum_{(i,j) \in S^2} x_{i,j}.$$

We wish to maximize $|L_0|$ subject to the condition that $L_0 = L_1$. For $(k, l) \in S^2$, let $N(k, l)$ denote the set of neighbours of (k, l) . In order to have $L_0 = L_1$, we need the following to hold for each $(k, l) \in S^2$.

If $(k, l) \in L_0$ we require that (k, l) has either 2 or 3 neighbours in L_0 , that is $\sum_{(i,j) \in N(k,l)} x_{i,j} \in \{2, 3\}$,

If $(k, l) \notin L_0$ then (k, l) cannot have exactly 3 neighbours in L_0 , that is $\sum_{(i,j) \in N(k,l)} x_{i,j} \neq 3$.

These constraints are equivalent to

$$\begin{aligned} \text{If } x_{k,l} = 1 \text{ then } & \left(\sum_{(i,j) \in N(k,l)} x_{i,j} \geq 2 \text{ and } \sum_{(i,j) \in N(k,l)} x_{i,j} \leq 3 \right) \\ \text{If } x_{k,l} = 0 \text{ then } & \left(\sum_{(i,j) \in N(k,l)} x_{i,j} \leq 2 \text{ or } \sum_{(i,j) \in N(k,l)} x_{i,j} \geq 4 \right). \end{aligned}$$

These are equivalent to

$$\sum_{(i,j) \in N(k,l)} x_{i,j} \geq 2 x_{k,l}, \quad \sum_{(i,j) \in N(k,l)} x_{i,j} \leq 8 - 5 x_{k,l}, \quad \left(\sum_{(i,j) \in N(k,l)} x_{i,j} \leq 2 + 6 x_{k,l} \text{ or } \sum_{(i,j) \in N(k,l)} x_{i,j} \geq 4 - 4 x_{k,l} \right)$$

because for example if $x_{k,l} = 1$ then the first two conditions become $\sum x_{i,j} \geq 2$ and $\sum x_{i,j} \leq 8$ and the last two conditions become $\sum x_{i,j} \leq 8$ and $\sum x_{i,j} \geq 0$ which are both automatically satisfied. Finally, to deal with the disjunction, we introduce another binary variable t , and we use the conditions

$$\sum_{(i,j) \in N(k,l)} x_{i,j} - 2 x_{k,l} \geq 0, \quad \sum_{(i,j) \in N(k,l)} x_{i,j} + 5 x_{k,l} \leq 8, \quad \sum_{(i,j) \in N(k,l)} x_{i,j} - 6 x_{k,l} \leq 2 + 6t, \quad \sum_{(i,j) \in N(k,l)} x_{i,j} + 4 x_{k,l} \geq 4t$$

so that for example when $t = 0$ the third condition becomes $\sum x_{i,j} \leq 2 + 6 x_{k,l}$ while the fourth becomes $\sum x_{i,j} \geq 0$ which is automatically satisfied.