

1: (a) Consider the LP where we minimize $z(x) = 3 - 2x_1 - x_2 + 2x_3$ subject to the constraints

$$\begin{aligned} -x_1 - 2x_2 + 3x_3 &= 1, \quad 3x_1 + x_2 - x_3 = 2 \\ -2x_1 + 3x_2 - 2x_3 &\leq 4, \quad -x_1 - x_2 + 2x_3 \geq 3, \quad x_1 \leq 0. \end{aligned}$$

Convert this to an equivalent LP in SEF for $\tilde{x} = (x_1^-, x_2^+, x_2^-, x_3^+, x_3^-, s, t)^T \in \mathbf{R}^7$. Express the answer in matrix form (that is in the form where we maximize $\tilde{z}(\tilde{x}) = \tilde{c}_0 + \tilde{c}^T \tilde{x}$ subject to $\tilde{A} \tilde{x} = \tilde{b}$, $\tilde{x} \geq 0$).

(b) Consider the LP where we maximize $z(x) = 3x_1 - x_2 + 2x_3 + x_4 - 2x_5$ subject to the constraints

$$\begin{aligned} x_1 + 2x_2 + x_3 + 3x_4 - x_5 &= 3, \quad 2x_1 + 3x_2 + x_3 + 4x_4 = 5 \\ 3x_1 + 2x_2 + x_3 - x_4 + 6x_5 &\leq 4, \quad x_1 \geq 0, \quad x_3 \geq 0. \end{aligned}$$

Solve the equality constraints for x_2 and x_4 in terms of x_1 , x_3 and x_5 , and then convert this LP to an equivalent LP in SEF for $\tilde{x} = (x_1, x_3, x_5^+, x_5^-, s)^T \in \mathbf{R}^5$. Express the answer in matrix form.

2: An LP in **Standard Inequality Form** (or SIF) is an LP in which we maximize the value of $z(x) = c_0 + c^T x$ for $x \in \mathbf{R}^n$ subject to $Ax \leq b$, where $c_0 \in \mathbf{R}$, $c \in \mathbf{R}^n$ and $A \in M_{k \times n}(\mathbf{R})$.

(a) Show that every LP is equivalent to an LP in SIF by converting the LP where we maximize $z(x) = c_0 + c^T x$ subject to $Ax = u$, $Bx \geq v$, $Cx \leq w$ into an equivalent LP in SIF. Express the answer in matrix form.

(b) Consider the LP in SIF where we maximize $z(x) = c_0 + c^T x$ subject to $Ax \leq b$.

- (i) Show that if $y \in \mathbf{R}^k$ with $A^T y = 0$, $y \geq 0$ and $b^T y < 0$, then the LP is unfeasible.
- (ii) Show that if $\bar{x} \in \mathbf{R}^n$ with $A\bar{x} \leq b$ and $y \in \mathbf{R}^n$ with $Ay \leq 0$ and $c^T y > 0$ then the LP is unbounded.
- (iii) Show that if $\bar{x} \in \mathbf{R}^n$ with $A\bar{x} \leq b$ and $y \in \mathbf{R}^k$ with $A^T y = c$, $y \geq 0$ and $b^T y = c^T \bar{x}$, then \bar{x} is an optimal solution for the LP.

3: Consider the LP where we maximize $z = c_0 + c^T x$ for $x \in \mathbf{R}^5$ subject to the constraints $Ax = b$ and $x \geq 0$, where

$$c_0 = 1, \quad c = (2, -3, 1, 4, -2)^T, \quad A = \begin{pmatrix} 1 & -1 & 1 & 0 & 1 \\ 1 & 2 & 1 & -3 & -2 \\ 2 & 1 & 1 & -1 & -4 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ -6 \\ -1 \end{pmatrix}.$$

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.

4: Consider the LP where we maximize $z = c_0 + c^T x$ for $x \in \mathbf{R}^5$ subject to $Ax = b$ and $x \geq 0$, where

$$c_0 = 4, \quad c = (1, 2, 1, -1, 3)^T, \quad A = \begin{pmatrix} 1 & 2 & -1 & 6 & 1 \\ 2 & 1 & 1 & 0 & -4 \\ 2 & 3 & 1 & 2 & -2 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ -3 \\ -1 \end{pmatrix}.$$

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.

5: Consider the LP where we maximize $z = c_0 + c^T x$ for $x \in \mathbf{R}^5$ subject to $Ax = b$ and $x \geq 0$, where

$$c_0 = 2, \quad c = (-1, 1, 1, -2, 1)^T, \quad A = \begin{pmatrix} 1 & 1 & 0 & 2 & 1 \\ 2 & 0 & 1 & 1 & -1 \\ -1 & -1 & 1 & -1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

Determine whether the LP is unfeasible, unbounded, or has an optimal solution, and find a certificate.