
CO 250 Intro to Optimization, Solutions to Assignment 6

1: Recall that we formalized the maximum weight perfect matching problem using the following LP. Given a
weighted graph G, we introduce variables xe for each edge e ∈ E, and we maximize z =

∑
e∈E

cexe where

ce = weight(e) subject to
∑

e∈E s.t. v∈e
xe = 1 for each vertex v and xe ≥ 0 for each edge e. Using the Simplex

Algorithm to solve this LP, and using our formula for a certificate of optimality, find a maximum weight
perfect matching and an optimal dual solution for the weighted graph G with vertex set V = {a, b, c, d},
edge set E = {ab, ac, bc, bd} and weights c =

(
cab, cac, cbc, cbd

)T
= (5, 4, 6, 3)T .

Solution: In matrix form, we must maximize z = cTx subject to Ax = 11, x ≥ 0, where

A =


1 1 0 0
1 0 1 1
0 1 1 0
0 0 0 1

 , c =


5
4
6
3

 .

We put the LP in Canonical form for the basis B = {1, 2, 3, 4} (the only possible basis).

(
−cT 0
A 11

)
=


−5 −4 −6 −3 0

1 1 0 0 1
1 0 1 1 1
0 1 1 0 1
0 0 0 1 1

 ∼


0 1 −6 −3 5

1 1 0 0 1
0 1 −1 −1 0
0 1 1 0 1
0 0 0 1 1

 ∼


0 0 −5 −2 5

1 0 1 1 1
0 1 −1 −1 0
0 0 2 1 1
0 0 0 1 1



∼


0 0 0 1

2
15
2

1 0 0 1
2

1
2

0 1 0 − 1
2

1
2

0 0 1 1
2

1
2

0 0 0 1 1

 ∼


0 0 0 0 7

1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1


We see that the maximum value for z is zmax = 7 and this occurs at x = (0, 1, 0, 1)T . A certificate of
optimality (that is a feasible dual solution) is given by y = A−TB cB = A−T c. We have

(
AT
∣∣c) =


1 1 0 0
1 0 1 0
0 1 1 0
0 1 0 1

∣∣∣∣∣∣∣
5
4
6
3

 ∼


1 1 0 0
0 1 −1 0
0 1 1 0
0 1 0 1

∣∣∣∣∣∣∣
5
1
6
3

 ∼


1 0 1 0
0 1 −1 0
0 0 2 0
0 0 1 1

∣∣∣∣∣∣∣
4
1
5
2



∼


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 2

∣∣∣∣∣∣∣
2
3
2
−1

 ∼


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣
3
2
7
2
5
2

− 1
2


and so y =

(
3
2 ,

7
2 ,

5
2 ,−

1
2

)T
is an optimal feasible dual solution.



2: (a) Use the Hungarian Algorithm to find a maximum weight perfect matching in the following weighted
graph G.
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Solution: The steps of the algorithm are summarized in the following pictures. We find that a maximum
weight perfect matching is given by M = {af, bh, cg, de}.

4 0 3 0 2 1

3 0 2 1 1 2

3 0 2 1 1 2

6 0 5 0 4 0

(b) Use the Hungarian Algorithm to find a maximum weight matching in the following weighted graph G.
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Solution: First we add edges of weight 0 to obtain the complete bipartite graph K4,4, then we apply the
algorithm. The steps are summarized in the following pictures. We find that N = {ag, bh, cf, de} is a
maximum weight perfect matching in K4,4, and ag was an added edge so M = N \ {ag} = {bh, cf, de} is a
maximum weight matching in G.

3 0 0 3

7 0 4 3

5 0 2 0

6 0 3 3



3: Consider the IP where we maximize z = cTx subject to Ax = b and x ≥ 0, where

A =

(
1 1 2 5
1 −3 −2 1

)
, b =

(
12
−4

)
, c =

(
− 2, 5, 4,−1

)T
.

(a) Find the duality gap for this IP by solving both the IP and its LP relaxation using an accurate sketch
of the feasible set.

Solution: We have(
A
∣∣b) =

(
1 1 2 5
1 −3 −2 1

∣∣∣∣ 12
−4

)
∼
(

1 1 2 5
0 4 4 4

∣∣∣∣ 12
16

)
∼
(

1 0 1 4
0 1 1 1

∣∣∣∣ 8
4

)
so the solution to Ax = b is given by x = p + su + tv where p = (8, 4, 0, 0)T , u = (−1,−1, 1, 0)T and
v = (−4,−1, 0, 1)T . Also, we have c = cTx = cT (p + su + tv) = (cT p) + (cTu)s + (cT v)t = 4 + s + 2t. We
sketch the feasibility set (outlined in blue) in the st-plane along with some level curves z = const (in red).
From the picture, we see that the maximum value of z for x ∈ Z4 is z = 9, which occurs at (s, t) = (3, 1),
that is at x = (1, 0, 3, 1), and the maximum value of z for x ∈ R4 occurs at the point of intersection of the
lines s+ 4t = 8 and s+ t = 4. The point of intersection is (s, t) =

(
8
3 ,

4
3

)
and then z = 4 + s+ 2t = 28

3 . Thus
te duality gap is 28

3 − 9 = 1
3 .

t

s

z = 4 z = 9

(b) Solve the LP relaxation using the Simplex Algorithm beginning with the feasible basis B = {1, 2}, find a
cutting-plane and add the corresponding inequality to the constraints, put the new LP into SEF and solve
it using the Simplex Algorithm, beginning with a sensibly chosen feasible basis.

Solution: We put the tableau in canonical form for B = {1, 2} then perform iterations of the Simplex
Algorithm, indicating the pivots in bold. (We can use the row operations performed in part (a) to save a
few steps). (

−cT c0
A b

)
∼

 2 −5 −4 1 0

1 0 1 4 8
0 1 1 1 4

 ∼
 0 0 −1 −2 4

1 0 1 4 8
0 1 11 1 4


∼

 0 1 0 −1 8

1 −1 0 33 4
0 1 1 1 4

 ∼


1
3

2
3 0 0 28

3

1
3 −

1
3 0 1 4

3

− 1
3

4
3 1 0 8

3


We see that the maximum value of z for x ∈ R4 is z = 28

3 and this occurs when x =
(
0, 0, 8

3 ,
4
3

)
. To get

a cutting-plane we modify the first equality constraint 1
3x1 − 1

3x2 + x4 = 4
3 to get the inequality constraint

b 13cx1 + b− 1
3cx2 + x4 = b 43c, that is −x2 + x4 ≤ 1. When we add this constraint to the LP and put the new

LP into SEF, we can immediately put the tableau into canonical form for the basis B̃ = {1, 2, 5} and then
we apply the Simplex Algorithm to get

0 0 −1 −2 0 4

1 0 1 4 0 8
0 1 11 1 0 4
0 −1 0 1 1 1

 ∼


0 1 0 −1 0 8

1 −1 0 3 0 4
0 1 1 1 0 4
0 −1 0 11 1 1

 ∼


0 0 0 0 1 9

1 2 0 0 −3 1
0 2 1 0 −1 3
0 −1 0 1 1 1


We see that the new maximum value for z is z = 9, and this occurs when

(
x
s

)
=
(
1, 0, 3, 1, 0

)T
, where s is

the slack variable. Since x = (1, 0, 3, 1)T ∈ Z4, this is the maximum value of z for the original IP.


