
CO 250 Intro to Optimization, Solutions to Assignment 5

1: Consider the LP (not in SEF) where we maximize z = cTx subject to Ax ≤ b and x ≥ 0.

(a) Put the LP into SEF then find and simplify the DLP.

Solution: In SEF, we maximize z = ( cT 0 )

(
x
s

)
subject to (A I )

(
x
s

)
= b and

(
x
s

)
≥ 0. The DLP is

to minimize w = bT y subject to

(
AT

I

)
y ≥

(
c
0

)
. The conditions can be rewritten as AT y ≥ c and y ≥ 0.

(b) Find optimal solutions x and y to the LP and the DLP when

A =

 2 5 3
1 2 1
2 3 4

 , b =

 2
10
5

 and c =

 2
0
3

 .

Solution: We solve the LP in SEF using the Simplex Algorithm.

(
−cT 0 0
A I b

)
=


−2 0 −3 0 0 0 0

2 5 3 1 0 0 2
3 4 5 0 1 0 10
1 2 1 0 0 1 5

 ∼


0 5 0 1 0 0 2

1 5
2

3
2

1
2 0 0 1

0 − 1
2 −

1
2 −

1
2 1 0 9

0 −2 1 −1 0 1 3


We see that the maximum value of z is zmax = 2 and it occurs at

(
x
s

)
=
(
1, 0, 0, 0, 9, 3

)T
when the basis is

B = {1, 5, 6}. An optimal dual solution (that is a certificate for x) is given by

y =
(
A I

)−T
B

(
c
0

)
B

=

 2 1 2
0 1 0
0 0 1

−1 2
0
0

 =

 1
2 −

1
2 −1

0 1 0
0 0 1

 2
0
0

 =

 1
0
0

 .



2: Consider the LP where we maximize z = cTx subject to Ax = b and x ≥ 0 where

A =


1 4 2 15 2 0 7
0 1 1 6 1 0 3
−1 1 1 6 2 1 6
−5 −8 3 2 3 −1 1

 , b =


7
3
4
2

 and c =
(
− 1, 2,−2,−5, 3,−1,−2

)T
.

Let x = (1, 0, 3, 0, 0, 2, 0)T .

(a) Show that x is a basic feasible solution for the basis B = {1, 3, 5, 6} but that the vector y = AB
−T cB is

not a certificate of optimality for x.

Solution: x is a feasible solution for the basis B since x ≥ 0 and xN = (x2, x4, x7)T = (0, 0, 0)T and we have

Ax =


1 4 2 15 2 0 7
0 1 1 6 1 0 3
−1 1 1 6 2 1 6
−5 −8 3 2 3 −1 1




1
0
3
0
0
2
0


=


7
3
4
2

 = b .

We have

(
AT
B
∣∣cB) =


1 0 −1 −5
2 1 1 3
2 1 2 3
0 0 1 −1

∣∣∣∣∣∣∣
−1
−2

3
−1

 ∼


1 0 −1 −5
0 1 3 13
0 1 4 13
0 0 1 −1

∣∣∣∣∣∣∣
−1

0
5
−1

 ∼


1 0 −1 −5
0 1 3 13
0 0 1 0
0 0 1 −1

∣∣∣∣∣∣∣
−1

0
5
−1



∼


1 0 0 −5
0 1 0 13
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣
4
−15

5
6

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣
34
−93

5
6


and so y = A−TB cB = (34,−15, 5, 6)T , but

AT y =



1 0 −1 −5
4 1 1 −8
2 1 1 3
15 6 6 2
2 1 2 3
0 0 1 −1
7 3 6 1




34
−93

5
6

 =



−1
0
−2
−6

3
−1
−5


and so we do not have AT y ≥ c.



(b) Show that x is an optimal solution and find a certificate of optimality for x.

Solution: First we put the LP into canonical form for the feasible basis B = {1, 3, 5, 6}.

(
−cT 0
A b

)
=


1 −2 2 5 −3 1 2 0

1 4 2 15 2 0 7 7
0 1 1 6 1 0 3 3
−1 1 1 6 2 1 6 4
−5 −8 3 2 3 −1 1 2

 ∼


0 −6 0 −10 −5 1 −5 −7

1 4 2 15 2 0 7 7
0 1 1 6 1 0 3 3
0 5 3 21 4 1 13 11
0 12 13 77 13 −1 36 37



∼


0 −6 0 −10 −5 1 −5 −7

1 2 0 3 0 0 1 1
0 1 1 6 1 0 3 3
0 2 0 3 1 1 4 2
0 −1 0 −1 0 −1 −3 −2

 ∼


0 4 0 5 0 6 15 3

1 2 0 3 0 0 1 1
0 −1 1 3 0 −1 −1 1
0 2 0 3 1 1 4 2
0 −1 0 −1 0 −1 −3 −2



∼


0 −2 0 −1 0 0 −3 −9

1 2 0 3 0 0 1 1
0 0 1 4 0 0 2 3
0 11 0 2 1 0 1 0
0 1 0 1 0 1 3 2


Then we perform two iterations of the Simplex Algorithm pivoting first at position (3, 2) then at (3, 7).

(
−cT 0
A b

)
∼


0 0 0 3 2 0 −1 −9

1 0 0 −1 −2 0 −1 1
0 0 1 4 0 0 2 3
0 1 0 2 1 0 11 0
0 0 0 −1 −1 1 2 2

 ∼


0 1 0 5 3 0 0 −9

1 1 0 1 −1 0 0 1
0 −2 1 0 −2 0 0 3
0 1 0 2 1 0 1 0
0 −2 0 −5 −3 1 0 2


We see that the maximum value of z is zmax = −9 and this occurs at x =

(
1, 0, 3, 0, 0, 2, 0

)T
which is the

basic solution for the basis B = {1, 3, 6, 7}. We have

(
AT
B
∣∣cB) =


1 0 −1 −5
2 1 1 3
0 0 1 −1
7 3 6 1

∣∣∣∣∣∣∣
−1
−2
−1
−2

 ∼


1 0 −1 −5
0 1 3 13
0 0 1 −1
0 3 13 36

∣∣∣∣∣∣∣
−1

0
−1

5

 ∼


1 0 −1 −5
0 1 0 16
0 0 1 −1
0 0 4 −3

∣∣∣∣∣∣∣
−1

3
−1

5



∼


1 0 0 −6
0 1 0 16
0 0 1 −1
0 0 0 1

∣∣∣∣∣∣∣
−2

3
−1

9

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣
52
−141

8
9


and so y =

(
52,−141, 8, 9

)T
is a certificate of optimality for x.



3: Let G be the weighted graph with vertex set V = {a, b, c, d}, edge set E = {ab, ac, bc, bd, cd}, and weights
given by the vector c = (2, 4, 1, 5, 3)T (so for example w(ab) = 2 and w(ac) = 4). Consider the problem of
finding the minimum weight path in G from a to d.

b

2 5

a 1 d

4 3

c

(a) Let M =
{
S ⊆ V

∣∣a ∈ S, d /∈ S
}

=
{
{a}, {a, b}, {a, c}, {a, b, c}

}
. Find cut(S) for each S ∈ M then find

the matrix A with entries

AS,e =

{
1 if e ∈ cut(S)

0 if e /∈ cut(S).

Solution: We have
cut
(
{a}
)

= {ab, ac}
cut
(
{a, b}

)
= {ac, bc, bd}

cut
(
{a, c}

)
= {ab, bc, bd}

cut
(
{a, b, c}

)
= {bd, cd}

so

A =


1 1 0 0 0
0 1 1 1 0
1 0 1 1 0
0 0 0 1 1

 .

(b) The minimum weight path problem is to minimize z = cTx subject to Ax ≥ 11, x ≥ 0. Put this LP into
SEF, find and simplify the DLP, then put the DLP into SEF.

Solution: In SEF, the LP is to maximize z =
(
− cT 0

)(x
s

)
subject to

(
A − I

)(x
s

)
= 11 and

(
x
s

)
≥ 0.

The DLP is to minimize 11T y subject to

(
AT

−I

)
y ≥

(
−c
0

)
that is subject to AT y ≥ −c and −y ≥ 0.

Letting u = −y, we maximize w = 11Tu subject to ATu ≤ c and u ≥ 0. In SEF the DLP is to maximize

w =
(
11T 0

)(u
t

)
subject to

(
AT I

)(u
t

)
= c and

(
u
t

)
≥ 0.



(c) Solve the DLP using the simplex algorithm.

Solution: We have

(−11T 0 0

AT I c

)
=



−1 −1 −1 −1 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 2
1 1 0 0 0 1 0 0 0 4
0 1 0 0 0 1 0 0 0 4
0 1 1 0 0 0 1 0 0 1
0 1 1 1 0 0 0 1 0 5
0 0 0 1 0 0 0 0 1 3


∼



0 −1 0 −1 1 0 0 0 0 2

1 0 1 0 1 0 0 0 0 2
0 1 −1 0 −1 1 0 0 0 2
0 1 1 0 0 0 1 0 0 1
0 1 1 1 0 0 0 1 0 5
0 0 0 1 0 0 0 0 1 3



∼



0 0 1 −1 1 0 1 0 0 3

1 0 1 0 1 0 0 0 0 2
0 0 −2 0 −1 1 −1 0 0 1
0 1 1 0 0 0 1 0 0 1
0 0 0 1 0 0 −1 1 0 4
0 0 0 1 0 0 0 0 1 3

 ∼


0 0 1 0 1 0 1 0 1 6

1 0 1 0 1 0 0 0 0 2
0 0 −2 0 −1 1 −1 0 0 1
0 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 −1 1 −1 1
0 0 0 1 0 0 0 0 1 3


We see that the maximum value for w is wmax = 6 and this occurs at

(
u
t

)
=
(
2, 1, 0, 3, 0, 1, 0, 1, 0

)T
for the

basis B = {1, 2, 4, 6, 8}.
(d) Use your solution from part (c) to find an optimal solution to the LP.

Solution: Since the LP is the dual of the DLP, a certificate x for the optimal solution u = (2, 1, 0, 3)T will

also be an optimal solution to the LP, so we can take x =
(
AT I

)−T
B

(
11
0

)
B

. We have

((
AT I

)T
B

∣∣∣∣ ( 11
0

)
B

)
=


1 1 0 0 0
0 1 1 1 0
0 0 0 1 1
0 1 0 0 0
0 0 0 1 0

∣∣∣∣∣∣∣∣∣
1
1
1
0
0

 ∼


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣
1
0
1
0
1


and so x =

(
1, 0, 1, 0, 1

)T
is an optimal solution to the original LP.



4: Consider the problem of finding the minimum weight path from a to g in the weighted graph G shown below.

b 3 e

1 5 2 6
d6 4

a g

3 2 3 2

c 6 f

(a) Let u be the vector with entries uS for each S ∈M =
{
S ⊂ V

∣∣a ∈ S, g /∈ S
}

whose non-zero entries are

S {a} {a, b, c} {a, b, c, d} {a, b, c, d, e, f}
uS 1 1 2 2

Determine whether u is a feasible dual solution and, if so, whether u is optimal.

Solution: Recall that u is feasible when we have uS ≥ 0 for all S ∈ M =
{
S ⊆ V

∣∣a ∈ S, d /∈ S
}

and also

sl(e) ≥ 0 for every edge e, where sl(e) = ce −
∑

S∈M s.t. e∈cut(S)

. The given vector u is feasible because clearly

u ≥ 0 and the values of sl(e) are as follows

e ab ac ad bc bd cd cf de df dg eg fg
sl(e) 0 4 2 0 4 1 3 0 1 0 4 0

On the other hand, u is not optimal because we can easily find (by inspection) other feasible dual solutions
v which give a larger objective value than u. For example, the vector v whose non-zero entries are

S {a, b} {a, b, c, d, e} {a, b, c, d, e, f}
vS 3 3 1

is also feasible and
∑

vS = 7, which is greater than
∑

uS = 6.

(b) Use the algorithm from class to find a minimum weight path in G from a to f along with an optimal
dual solution.

Solution: The results of applying the algorithm are shown below. We obtain the minimum-weight path
a, c, d, g (with total weight 3 + 2 + 4 = 9) and the optimal dual solution u given by u{a} = 1, u{a,b} = 2,
u{a,b,c} = 1, u{a,b,c,e} = 1, u{a,b,c,d,e} = 3, u{a,b,c,d,e,f} = 1 and uS = 0 for all other sets S.

b e

3

1 5 2 6

a 6 d 4 g

3 2 3 2

6

c f

1

2

1 1 3

1



5: Consider the following problem. Given a graph G with vertex set V and edge set E, we wish to find the
vector x, with entries xe for each e ∈ E, which maximizes the sum z =

∑
e∈E

xe subject to the constraints

xe ≥ 0 for all e ∈ E and
∑

e∈E,v∈e
xe ≤ 2 for all v ∈ V .

(a) Find A, b and c so that the problem is to maximize cTx subject to Ax ≤ b and x ≥ 0, then put the LP
into SEF.

Solution: In matrix form, we maximize z = 11Tx subject to Ax ≤ 22 and x ≥ 0 where 11 is the vector whose

entries are all 1, 22 is the vector whose entries are all 2, and A is the matrix with entries Av,e =

{
1 if v ∈ e

0 if v /∈ e .

In SEF, we maximize z =
(
11T 0

)(x
s

)
subject to

(
A I

)(x
s

)
= 22 and

(
x
s

)
≥ 0.

(b) Show that the complementary slackness conditions are that
(1)

∑
v∈e

yv = 1 for each e ∈ E with xe 6= 0, and

(2) yv = 0 for each v ∈ V with
∑

e∈E,v∈e
xe < 2.

Solution: The complementary slackness conditions are that
((

AT

I

)
y
)
i

=

(
11
0

)
i

whenever

(
x
s

)
i

6= 0,

or equivalently (1) (AT y)e = 1 whenever xe 6= 0, and (2) yv = 0 whenever sv 6= 0. To simplify (1),
note that (AT y)e =

∑
v∈V

Av,eyv =
∑
v∈e

yv, and so condition (1) can be rewritten as
∑
v∈e

yv = 1 whenever

xe 6= 0. To simplify (2), note that for feasible x we have Ax + s = 22, that is s = 22 − Ax, and so
sv = 2 − (Ax)v = 2 −

∑
e∈E

Av,exe = 2 −
∑

e∈E s.t. v∈e
xe. Thus we have sv 6= 0 ⇐⇒

∑
e∈E s.t. v∈e

xe 6= 2, and so

condition (2) can be rewritten as yv = 0 whenever
∑

e∈E s.t. v∈e
xe < 2.

(c) For the graph G shown below, find an optimal solution x with xe ∈ {0, 1} for all e ∈ E, and an optimal
dual solution y with yv ∈ {0, 1} for all v ∈ V .

a b c

d e f

g h i

Solution: First note that, from the SEF form of the given LP, the DLP is to minimize w = 22T y subject to(
AT

I

)
y ≥

(
11
0

)
, that is subject to AT y ≥ 11 and y ≥ 0. The vector y has entries yv for each vertex v, and

the DLP is to minimize w = 2
∑
v∈V

yv subject to the conditions that
∑
v∈e

yv ≥ 1 for each edge e and yv ≥ 0

for each vertex v. We choose x to be the vector corresponding to the path a, b, c, f, e, d, g, h, i, that is

x =
(
xab, xad, xbc, xbe, xcf , xde, xdg, xef , xeh, xfi, xgh, xhi

)T
= (1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1)T

and we choose y to be the vector

y =
(
ya, yb, yc, yd, ye, yf , yg, yh, yi)

T = (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)T .

It is easy to check that x is feasible for the LP, y is feasible for the DLP, and x and y satisfy the complementary
slackness conditions, so they are both optimal solutions. Indeed, z =

∑
e∈E

xe = 8 = 2
∑
v∈V

yv = w.


