

CO 250 Intro to Optimization, Solutions to Assignment 4

1: (a) Consider the LP (not in SEF) where we maximize $z = 3x - y - 2$ for $0 \leq x, y \in \mathbf{R}$ with $x - 2y \leq 1$, $x - y \leq 2$, $3x - 2y \leq 7$ and $x + y \leq 4$. Put this LP into SEF then apply the Simplex Algorithm, beginning with the obvious feasible basis, to solve the LP.

Solution: We give the tableau for the modified LP in SEF, using the variables $\tilde{x} = (x, y, s_1, \dots, s_5)^T$, and we apply the Simplex Algorithm. At each stage the entry in the pivot position is shown in bold face.

$$\begin{aligned} \begin{pmatrix} -\tilde{c} & \tilde{c}_0 \\ \tilde{A} & \tilde{b} \end{pmatrix} &= \begin{pmatrix} -3 & 1 & 0 & 0 & 0 & -2 \\ \mathbf{1} & -2 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 3 & -2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & -5 & 3 & 0 & 0 & 0 & 1 \\ 1 & -2 & 1 & 0 & 0 & 0 & 1 \\ 0 & \mathbf{1} & -1 & 1 & 0 & 0 & 1 \\ 0 & 4 & -3 & 0 & 1 & 0 & 4 \\ 0 & 3 & -1 & 0 & 0 & 1 & 3 \end{pmatrix} \\ &\sim \begin{pmatrix} 0 & 0 & -2 & 5 & 0 & 0 & 6 \\ 1 & 0 & -1 & 1 & 0 & 0 & 3 \\ 0 & 1 & -1 & 1 & 0 & 0 & 1 \\ 0 & 0 & \mathbf{1} & -4 & 1 & 0 & 0 \\ 0 & 0 & 2 & -3 & 0 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 & -3 & 2 & 0 & 6 \\ 1 & 0 & 0 & -2 & 1 & 0 & 3 \\ 0 & 1 & 0 & -3 & 1 & 0 & 1 \\ 0 & 0 & 1 & -4 & 1 & 0 & 0 \\ 0 & 0 & 0 & \mathbf{5} & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{4}{5} & \frac{3}{5} & 6 \\ 1 & 0 & 0 & 0 & \frac{1}{5} & \frac{2}{5} & 3 \\ 0 & 1 & 0 & 0 & -\frac{1}{5} & \frac{3}{5} & 1 \\ 0 & 0 & 1 & 0 & -\frac{3}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 0 & 1 & -\frac{2}{5} & \frac{1}{5} & 0 \end{pmatrix} \end{aligned}$$

We see that the maximum value for z is $z_{\max} = 6$ and this value is attained when $\tilde{x} = (3, 1, 0, 0, 0, 0)^T$, that is when $(x, y) = (3, 1)$.

(b) Consider the LP where we maximize $z = c^T x$ for $x \in \mathbf{R}^6$ with $Ax = b$ and $x \geq 0$, where

$$A = \begin{pmatrix} 1 & 2 & 1 & 0 & 1 & 3 \\ 2 & 3 & 3 & 1 & 2 & 5 \\ 2 & 5 & 2 & 1 & 3 & 6 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 7 \\ 6 \end{pmatrix} \quad \text{and } c = (0, 1, 1, 4, 1, 2)^T.$$

Use the Simplex Algorithm, starting with the feasible basis $\mathcal{B} = \{1, 2, 3\}$, to solve the LP.

Solution: We give the tableau for the LP, we perform row operations to put the tableau into canonical form for the basis \mathcal{B} , then we perform iterations of the Simplex Algorithm, at each stage showing the entry in the pivot position in bold face.

$$\begin{aligned} \begin{pmatrix} -\tilde{c} & \tilde{c}_0 \\ \tilde{A} & \tilde{b} \end{pmatrix} &= \begin{pmatrix} 0 & -1 & -1 & -4 & -1 & -2 & 0 \\ 1 & 2 & 1 & 0 & 1 & 3 & 3 \\ 2 & 3 & 3 & 1 & 2 & 5 & 7 \\ 2 & 5 & 2 & 1 & 3 & 6 & 6 \end{pmatrix} \sim \begin{pmatrix} 0 & -1 & -1 & -4 & -1 & -2 & 0 \\ 1 & 2 & 1 & 0 & 1 & 3 & 3 \\ 0 & -1 & 1 & 1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{pmatrix} \\ &\sim \begin{pmatrix} 0 & 0 & -2 & -5 & -1 & -1 & -1 \\ 1 & 0 & 3 & 2 & 1 & 1 & 5 \\ 0 & 1 & -1 & -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 2 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 0 & 0 & -1 & 1 & -3 & 1 \\ 1 & 0 & 0 & -4 & -2 & \mathbf{4} & 2 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & -1 & 1 \end{pmatrix} \\ &\sim \begin{pmatrix} \frac{3}{4} & 0 & 0 & -4 & -\frac{1}{2} & 0 & \frac{5}{2} \\ \frac{1}{4} & 0 & 0 & -1 & -\frac{1}{4} & 1 & \frac{1}{2} \\ 0 & 1 & 0 & \mathbf{1} & 1 & 0 & 0 \\ \frac{1}{4} & 0 & 1 & 1 & \frac{1}{2} & 0 & \frac{3}{2} \end{pmatrix} \sim \begin{pmatrix} \frac{3}{4} & 4 & 0 & 0 & \frac{7}{2} & 0 & \frac{5}{2} \\ \frac{1}{4} & 1 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ \frac{1}{4} & -1 & 1 & 0 & -\frac{1}{2} & 0 & \frac{3}{2} \end{pmatrix} \end{aligned}$$

We see that the maximum value for z is $z_{\max} = \frac{5}{2}$ and this value is attained at $\bar{x} = (0, 0, \frac{3}{2}, 0, 0, \frac{1}{2})^T$.

2: Consider the LP where we maximize $z = c^T x$ subject to $Ax = b$ and $x \geq 0$ where

$$A = \begin{pmatrix} 1 & 2 & -2 & 1 & 0 & 2 \\ 2 & 4 & -2 & 3 & 1 & 3 \\ 1 & 3 & -1 & 2 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \text{ and } c = (1, -1, -2, 3, 2, 3)^T.$$

(a) Use Phase I of the Simplex Algorithm to show that the LP is feasible and to find a feasible basis.

Solution: We solve the auxiliary LP where we maximize $w = -\sum s_i = -u^T s$, where $u = (1, 1, 1)^T$, subject to $Ax + s = b$ with $x \geq 0$ and $s \geq 0$. We apply the Simplex Algorithm to the auxiliary LP.

$$\begin{aligned} \begin{pmatrix} 0 & u & 0 \\ A & I & b \end{pmatrix} &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 2 & -2 & 1 & 0 & 2 & 1 & 0 & 0 & 2 \\ 2 & 4 & -2 & 3 & 1 & 3 & 0 & 1 & 0 & 4 \\ 1 & 3 & -1 & 2 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} -4 & -9 & 5 & -6 & -2 & -6 & 0 & 0 & 0 & -7 \\ 1 & 2 & -2 & 1 & 0 & 2 & 1 & 0 & 0 & 2 \\ 2 & 4 & -2 & 3 & 1 & 3 & 0 & 1 & 0 & 4 \\ \mathbf{1} & 3 & -1 & 2 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \\ &\sim \begin{pmatrix} 0 & 3 & 1 & 2 & 2 & -2 & 0 & 0 & 4 & -3 \\ 0 & -1 & -1 & -1 & -1 & \mathbf{1} & 1 & 0 & -1 & 1 \\ 0 & -2 & 0 & -1 & -1 & 1 & 0 & 1 & -2 & 2 \\ 1 & 3 & -1 & 2 & 1 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & -1 & 0 & 0 & 0 & 2 & 0 & 2 & -1 \\ 0 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 0 & -1 \\ 0 & -1 & \mathbf{1} & 0 & 0 & 0 & -1 & 1 & -1 & 1 \\ 1 & 4 & 0 & 3 & 2 & 0 & -1 & 0 & 2 & 0 \end{pmatrix} \\ &\sim \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & -2 & 0 & -1 & -1 & 1 & 0 & 1 & -2 & 2 \\ 0 & -1 & 1 & 0 & 0 & 0 & -1 & 1 & -1 & 1 \\ 1 & 4 & 0 & 3 & 2 & 0 & -1 & 0 & 2 & 0 \end{pmatrix} \end{aligned}$$

We see that the maximum value for w is $w_{\max} = 0$, so the original LP is feasible, and that $\mathcal{B} = \{1, 3, 6\}$ is a feasible basis.

(b) Beginning with the feasible basis found in (a), apply Phase II of the Simplex Algorithm to solve the LP.

Solution: From our work in part (a), we know that $(A|b) \sim (\tilde{A}|\tilde{b})$ where $\tilde{b} = (2, 1, 0)^T$ and \tilde{A} is the lower-left 3×6 matrix in the final tableau above. We then rearrange the rows of \tilde{A} to get

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} \sim \begin{pmatrix} -c^T & c_0 \\ \tilde{A} & \tilde{b} \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & 2 & -3 & -2 & -3 & 0 \\ 1 & 4 & 0 & 3 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & -1 & -1 & 1 & 2 \end{pmatrix}$$

We perform the row operation $R_0 \leftrightarrow R_0 + R_1 - 2R_2 + 3R_3$ to put this into canonical form for the basis \mathcal{B} , then we perform two iterations of the Simplex Algorithm.

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} \sim \begin{pmatrix} 0 & 1 & 0 & -3 & -3 & 0 & 4 \\ 1 & 4 & 0 & \mathbf{3} & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ 0 & -2 & 0 & -1 & -1 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 5 & 0 & 0 & -1 & 0 & 4 \\ \frac{1}{3} & \frac{4}{3} & 0 & 1 & \frac{2}{3} & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ \frac{1}{3} & -\frac{2}{3} & 0 & 0 & -\frac{1}{3} & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} \frac{3}{2} & 7 & 0 & \frac{3}{2} & 0 & 0 & 4 \\ \frac{1}{2} & 2 & 0 & \frac{3}{2} & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 1 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 1 & 2 \end{pmatrix}$$

We see that the maximum value of z is $z_{\max} = 4$ and this value occurs at $\bar{x} = (0, 0, 1, 0, 0, 2)^T$.

3: Consider the LP in SEF with tableau $\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix}$.

(a) Suppose that we apply the Simplex Algorithm to the LP and obtain a basis \mathcal{B} whose basic solution \bar{x} maximizes z . Show that \bar{x} together with the vector $y = A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$ form a certificate of optimality for the LP.

Solution: When we apply the Simplex Algorithm, we reduce the tableau for the LP to a modified tableau $\begin{pmatrix} -\tilde{c} & \tilde{c}_0 \\ \tilde{A} & \tilde{b} \end{pmatrix}$ which is in canonical form for a feasible basis \mathcal{B} , and the basic solution \bar{x} is given by $\bar{x}_{\mathcal{B}} = \tilde{b}$ and $\bar{x}_{\mathcal{N}} = 0$. In the case that the algorithm ends with an optimal solution \bar{x} , we have $\tilde{c} \leq 0$. Recall, from class, that $\tilde{b} = A_{\mathcal{B}}^{-1} b$ and $\tilde{c} = c - A^T y$, where $y = A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$. For y to be a certificate of optimality for \bar{x} for the original LP, we need $A\bar{x} = b$, $\bar{x} \geq 0$, $c^T \bar{x} = y^T b$ and $A^T y \geq c$. We have $A\bar{x} = b$ and $\bar{x} \geq 0$ since \bar{x} is a feasible point, and we have

$$c^T \bar{x} = c_{\mathcal{B}}^T \bar{x}_{\mathcal{B}} + c_{\mathcal{N}}^T \bar{x}_{\mathcal{N}} = c_{\mathcal{B}}^T \bar{x}_{\mathcal{B}} = c_{\mathcal{B}}^T \tilde{b} = c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} b = (A_{\mathcal{B}}^{-T} c_{\mathcal{B}})^T b = y^T b$$

and we have $c - A^T y = \tilde{c} \leq 0$ so that $A^T y \geq c$.

(b) Suppose that we apply the Simplex Algorithm to the LP, ending with the modified LP with tableau $\begin{pmatrix} -\tilde{c}^T & \tilde{c}_0 \\ \tilde{A} & \tilde{b} \end{pmatrix}$ in canonical form for the basis \mathcal{B} , with $\tilde{c}_k > 0$ and $\tilde{A}_k \leq 0$ (so that the original LP is unbounded). Show that the basic solution \bar{x} for \mathcal{B} together with the vector y given by $y_{\mathcal{B}} = -\tilde{A}_k$ and $y_{\mathcal{N}} = (e_k)_{\mathcal{N}}$ form a certificate of unboundedness for the original LP.

Solution: Recall, from class, that \bar{x} and y form a certificate of unboundedness for the modified LP, with $y \geq 0$, $\tilde{A}y = 0$ and $\tilde{c}^T y = \tilde{c}_k > 0$. Also recall that $\tilde{A} = A_{\mathcal{B}}^{-1} A$ and $\tilde{c} = c - A^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$, or equivalently $A = A_{\mathcal{B}} \tilde{A}$ and $c = \tilde{c} + A^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}}$. We know that $A\bar{x} = b$ and $\bar{x} \geq 0$ because \bar{x} is feasible, and we know that $y \geq 0$. We also have

$$\begin{aligned} Ay &= A_{\mathcal{B}} \tilde{A} y = A_{\mathcal{B}} \cdot 0 = 0, \text{ and} \\ c^T y &= (\tilde{c} + A^T A_{\mathcal{B}}^{-T} c_{\mathcal{B}})^T y = \tilde{c}^T y + c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} A y = \tilde{c}^T y + 0 = \tilde{c}_k > 0 \end{aligned}$$

and so \bar{x} and y also form a certificate of unboundedness for the original LP.

(c) Suppose that we apply Phase I of the Simplex Algorithm by solving the auxiliary LP in which we maximize $w = -\sum s_i$ subject to $Ax + s = b$ with $x \geq 0$ and $s \geq 0$, and we obtain an optimal solution $\begin{pmatrix} \bar{x} \\ \bar{s} \end{pmatrix}$ with $w = w_{\max} < 0$ (so the original LP is unfeasible). Show that if y is a certificate of optimality for the optimal solution for the auxiliary LP, then the same vector y is also a certificate of unfeasibility for the original LP.

Solution: Let $u = (1, \dots, 1)^T$ so that $w = -\sum s_i = -u^T s$ and the auxiliary LP has objective vector $(0, -u^T)$. A certificate of optimality y for the optimal solution $\begin{pmatrix} \bar{x} \\ \bar{s} \end{pmatrix}$ for this auxiliary LP satisfies the conditions $(0, -u)^T \begin{pmatrix} \bar{x} \\ \bar{s} \end{pmatrix} = y^T b$ and $y^T (A, I) \geq (0, -u^T)$. The first condition gives $y^T b = -u^T \bar{s} = -\sum \bar{s}_i = w_{\max}$ so we have $y^T b < 0$, and the second condition gives $y^T A \geq 0$ (and also $y^T \geq -u^T$). Since $y^T b < 0$ and $y^T A \geq 0$, the vector y is a certificate of unboundedness for the original LP.

4: Consider the LP where we maximize $z = c^T x$ subject to $Ax = b$ and $x \geq 0$ where

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 & 1 & 4 \\ 1 & 1 & 2 & 0 & 1 & 3 \\ 2 & 3 & 4 & 2 & 1 & 5 \end{pmatrix}, \quad b = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} \text{ and } c = (2, 1, 3, 0, 1, 4)^T.$$

(a) Use Phase I of the Simplex Algorithm, to show that the LP is unfeasible.

Solution: Let $u = (1, 1, 1)^T$. We begin with the tableau $\begin{pmatrix} 0 & u & 0 \\ A & I & b \end{pmatrix}$ for the auxiliary LP, where we maximize $w = -u^T s$ subject to $Ax + s = b$, $x \geq 0$ and $s \geq 0$, we perform the row operation $R_0 \rightarrow R_0 - R_1 - R_2 - R_3$ to put the tableau in canonical form for the basis $\{7, 8, 9\}$, and then we perform several iterations of the Simplex Algorithm.

$$\begin{aligned} \begin{pmatrix} 0 & u & 0 \\ A & I & b \end{pmatrix} &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 1 & 1 & 4 & 1 & 0 & 0 \\ 1 & 1 & 2 & 0 & 1 & 3 & 0 & 1 & 0 \\ 2 & 3 & 4 & 2 & 1 & 5 & 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} -4 & -6 & -9 & -3 & -3 & -12 & 0 & 0 & 0 & -6 \\ 1 & 2 & 3 & 1 & 1 & 4 & 1 & 0 & 0 & 3 \\ 1 & 1 & 2 & 0 & 1 & 3 & 0 & 1 & 0 & 1 \\ 2 & 3 & 4 & 2 & 1 & 5 & 0 & 0 & 1 & 2 \end{pmatrix} \\ &\sim \begin{pmatrix} 0 & -2 & -1 & -3 & 1 & 0 & 0 & 4 & 0 & -2 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 & -1 & 0 & 2 \\ 1 & 1 & 2 & 0 & 1 & 3 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 2 & -1 & -1 & 0 & -2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} \frac{1}{2} & -\frac{3}{2} & 0 & -3 & \frac{3}{2} & \frac{3}{2} & 0 & \frac{9}{2} & 0 & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & 1 & -\frac{3}{2} & 0 & \frac{3}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 & 0 & \frac{1}{2} & \frac{3}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 2 & -1 & -1 & 0 & -2 & 1 & 0 \end{pmatrix} \\ &\sim \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{3}{2} & \frac{3}{2} & -\frac{3}{2} \\ -\frac{1}{2} & 0 & 0 & 0 & 0 & 1 & -\frac{1}{2} & -\frac{1}{2} & \frac{3}{2} \\ \frac{1}{2} & 0 & 1 & -1 & 1 & 2 & 0 & \frac{3}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 & 2 & -1 & -1 & 0 & -2 & 1 & 0 \end{pmatrix} \end{aligned}$$

We see that the maximum value of w is $w_{\max} = -\frac{3}{2}$, and this occurs at $(\bar{x}^T, \bar{s}^T) = (0, 0, \frac{1}{2}, 0, 0, 0, \frac{3}{2}, 0, 0)^T$. Since $w_{\max} < 0$, it follows that the original LP is not feasible.

(b) Use the results of problem 3 to obtain a certificate of unfeasibility for the LP.

Solution: Let (\bar{x}^T, \bar{s}^T) be the optimal solution for the auxiliary LP found above. Note that it is the basic point for the basis $\mathcal{B} = \{2, 3, 7\}$. By problem 3(a), a certificate of optimality y , for (\bar{x}^T, \bar{s}^T) for the auxiliary LP, is given by

$$y = (A I)_{\mathcal{B}}^{-T} \begin{pmatrix} 0 \\ \mu \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & 0 \\ 3 & 4 & 0 \end{pmatrix}^{-T} \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$

We calculate y as follows.

$$\begin{pmatrix} 2 & 1 & 3 & 0 \\ 3 & 2 & 4 & 0 \\ 1 & 0 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 2 & 1 & 3 & 0 \\ 3 & 2 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 3 & 2 \\ 0 & 2 & 4 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} \end{pmatrix}$$

We find that $y = (-1, \frac{1}{2}, \frac{1}{2})^T$. By problem 3(c), this same vector y also serves as a certificate of unfeasibility for the original LP.

5: (a) Consider the LP where we maximize $z = 2x_1 - x_2 + 3x_3$ for $x_1, x_2, x_3 \in \mathbf{R}$ subject to the constraints $x_1 + 3x_2 - x_3 \geq -1$, $2x_1 + x_2 - 4x_3 \leq 3$, $x_1 + 2x_2 + x_3 = 1$ and $x_3 \geq 0$. Put the LP into SEF using the variables $x_1^+, x_1^-, x_2^+, x_2^-, x_3, s_1, s_2$, then find and simplify the dual LP.

Solution: The modified LP in SEF is to maximize $z = \tilde{c}^T \tilde{x}$ subject to $\tilde{A}\tilde{x} = \tilde{b}$ with $\tilde{x} \geq 0$, where

$$\tilde{x} = (x_1^+, x_1^-, x_2^+, x_2^-, x_3, s_1, s_2)^T, \quad \tilde{c} = (2, -2, -1, 1, 3, 0, 0)^T,$$

$$\tilde{A} = \begin{pmatrix} 1 & -1 & 3 & -3 & -1 & -1 & 0 \\ 2 & -2 & 1 & -1 & -4 & 0 & 1 \\ 1 & -1 & 2 & -2 & 1 & 0 & 0 \end{pmatrix}, \text{ and } \tilde{b} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}.$$

The DLP is to minimize $w = \tilde{b}^T y$ subject to $\tilde{A}^T y \geq \tilde{c}$, that is we minimize $w = -y_1 + 3y_2 + y_3$ subject to the constraints $y_1 + 2y_2 + y_3 = 2$, $3y_1 + y_2 + 2y_3 = -1$, $-y_1 - 4y_2 + y_3 \geq 3$, $y_1 \leq 0$ and $y_2 \geq 0$.

(b) Consider the LP where we maximize $z = c^T x$ for $x \in \mathbf{R}^2$ subject to $Ax \leq b$ where

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 2 \\ 2 & -3 \\ -3 & -1 \\ -1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 5 \\ 7 \\ 8 \\ 4 \end{pmatrix} \text{ and } c = \begin{pmatrix} -1 \\ -3 \end{pmatrix}.$$

Put the LP into SEF, find and simplify the dual LP, then put the dual LP into SEF.

Solution: The modified LP in SEF is to maximize $z = \tilde{c}^T x$ subject to $\tilde{A}\tilde{x} = \tilde{b}$ with $\tilde{x} \geq 0$ where

$$\tilde{x} = (x_1^+, x_1^-, x_2^+, x_2^-, s_1, s_2, s_3, s_4, s_5)^T, \quad \tilde{c} = (-1, 1, -3, 3, 0, 0, 0, 0, 0)^T,$$

$$\tilde{A} = \begin{pmatrix} 1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 2 & -2 & 0 & 1 & 0 & 0 & 0 \\ 2 & -2 & -3 & 3 & 0 & 0 & 1 & 0 & 0 \\ -3 & 3 & -1 & 1 & 0 & 0 & 0 & 1 & 0 \\ -1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } \tilde{b} = \begin{pmatrix} 1 \\ 5 \\ 7 \\ 8 \\ 4 \end{pmatrix}.$$

The dual LP (or DLP) is to minimize $w = \tilde{b}^T y$ subject to $\tilde{A}^T y \geq \tilde{c}$, or equivalently, to minimize

$$w = (1, 5, 7, 8, 4) y$$

subject to

$$\begin{pmatrix} 1 & -1 & 2 & -3 & -1 \\ 1 & 2 & -3 & -1 & -1 \end{pmatrix} y = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \quad y \geq 0.$$

In SEF, the DLP is to maximize

$$-w = (-1, -5, -7, -8, -4) y$$

subject to

$$\begin{pmatrix} 1 & -1 & 2 & -3 & -1 \\ 1 & 2 & -3 & -1 & -1 \end{pmatrix} y = \begin{pmatrix} -1 \\ -3 \end{pmatrix}, \quad y \geq 0.$$