
CO 250 Intro to Optimization, Solutions to Assignment 1

1: Maximize and minimize z = cTx for x ∈ R5 subject to Ax = b and x ≥ 0, where

c =


1
−2

1
3
−2

 , A =

 1 4 −3 −2 3
1 3 −2 −1 2
1 2 −2 −3 3

 , and b =

 3
4
−1

 .

Solution: We solve Ax = b. We have

(
A
∣∣b) =

 1 4 −3 −2 3
1 3 −2 −1 2
1 2 −2 −3 3

∣∣∣∣∣∣
3
4
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 ∼
 1 4 −3 −2 3

0 1 −1 −1 1
0 2 −1 1 0
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3
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
∼

 1 0 1 2 −1
0 1 −1 −1 1
0 0 1 3 −2

∣∣∣∣∣∣
7
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6

 ∼
 1 0 0 −1 1

0 1 0 2 −1
0 0 1 3 −2

∣∣∣∣∣∣
1
5
6


so the solution is x = p + su + tv where p = (1, 5, 6, 0, 0)T , u = (1,−2,−3, 1, 0)T and v = (−1, 1, 2, 0, 1)T .
We must optimize

z = cTx = c. (p+ su+ tv) = (c. p) + (c.u)s+ (c. v)t = −3 + 5s− 3t

subject to the constraints x1 ≥ 0, x2 ≥ 0, · · · , x6 ≥ 0 which we rewrite as 1 + s − t ≥ 0, 5 − 2s + t ≥ 0,
6− 3s+ 2t ≥ 0, s ≥ 0 and t ≥ 0. We draw a picture of the set of points (s, t) which satisfy these constraints
(outlined in blue) along with the level curves z = min and z = max (shown in orange).

t z = −6

z = 8

s

We see that the minimum value is z = −6 (which occurs when (s, t) = (0, 1)) and the maximum value is
z = 8 (which occurs when (s, t) = (4, 3)).



2: Maximize and minimize z = 2x−y for x, y ∈ Z (this is an integer program) subject to x+3y ≤ 7, 3x−2y ≤ 1
and 5x+ 2y ≥ −2.

Solution: The set of points (x, y) with x, y ∈ R which satisfy these constraints is outlined in green, and those
with x, y ∈ Z are shown in blue. We also show the level curves z = min and z = max in orange.

y

z = 1

x
z = −4

We see that the maximum value is z = 1 (which occurs when (x, y) = (1, 1)) and the minimum is z = −4
(which occurs when (x, y) = (−1, 2)).

3: Maximize and minimize z = x− 2y for x, y ∈ R subject to the non-linear constraints x2 + y2 ≤ 4x+ 2y and
4y ≤ x+ xy.

Solution: We complete the square to get

x2 + y2 ≤ 4x+ 2y ⇐⇒ x2 − 4x+ y2 − 2y ≤ 0 ⇐⇒ (x− 2)2 + (y − 1)2 ≤ 5 .

This is the region inside the circle of radius
√

5 centred at the point (2, 1). Also, we have

4y ≤ x+ xy ⇐⇒ y(4− x) ≤ x

and this is the region which lies between the two branches of the hyperbola y =
x

4− x
. The set of all points

(x, y) which satisfy these two constraints is shown below, outlined in blue, and the level sets z = max and
z = min are shown in orange.

y z = −3

z = 9

x

We see that the maximum value is z = 5 (which occurs when (x, y) = (3,−1)) and the minimum is z = −3
(which occurs when (x, y) = (3, 3)).



4: A company produces two products P1 and P2 which use two resources R1 and R2. They use 2 units of R1

per unit of P1 produced and 3 units of R1 per unit of P2 produced, and they have a total of 25 units of R1

available. They use 1 unit of R2 per unit of P1 and 2 units of R2 per unit of P2, and they have a total of
16 units of R2 available. They make a profit of 5 thousand dollars per unit of P1 produced and 8 thousand
dollars per unit of P2 produced. How much would it be worth to purchase 4 more units of R1?

Solution: Let x1 be the amount of product P1 produced and let x2 be the amount of product P2 produced.
When they have 25 units of R1 and 16 units of R2 available, the company maximizes the profit z = 5x1 +8x2
subject to the constraints

2x1 + 3x2 ≤ 25 , x1 + 2x2 ≤ 16 .

The feasible set is outlined below in blue and the level set z = max is shown in red. We see that the
maximum profit occurs when (x1, x2) = (2, 7) and the maximum profit is z = 5 · 2 + 8 · 7 = 66.

If the company buys an additional 4 units of R1 then they will have 29 units of R1 and 16 units of R2.
They will maximize the same objective function z = 5x1 + 8x2 subject to the new constraints

2x1 + 3x2 ≤ 29 , x1 + 2x2 ≤ 16 .

The new feasible set is outlined with a dashed blue line and the new level set z = max is shown as a dashed
red line. We see that the new maximum profit occurs when (x1, x2) = (10, 3), and the new maximum profit
is z = 5 · 10 + 8 · 3 = 74. Since the maximum profit would increase from 66 to 74 thousand dollars, it would
be worth 8 thousand dollars to purchase 4 more units of R1.

x2

z = 66 z = 74

x1



5: Let P be the polygon P =
{
x ∈ R2

∣∣Ax ≤ b
}

where A ∈ Mn×2(R) and b ∈ Rn. Show that the problem of
determining the maximum possible radius r for a circular disc which is contained in P can be formulated as
a linear programming problem.

Solution: Let a1, · · · , an be the row vectors of A. Then for x ∈ R2 we have

x ∈ P ⇐⇒ Ax ≤ b ⇐⇒ ai .x ≤ bi for all i .

For x ∈ R2 and r ≥ 0, let D(x, r) be the disc of radius r centred at x, that is

D(x, r) =
{
x ∈ R2

∣∣|x− x| ≤ r} .
We want to find x and r with D(x, r) ⊆ P such that r is as large as possible. For x ∈ R2 and r ≥ 0 we have

D(x, r) ⊆ P ⇐⇒ for all i, ai .x ≤ bi for all x ∈ D(x, r)

⇐⇒ for all i, max
{
ai .x∣∣x ∈ D(x, r)

}
≤ bi

Note that the point x ∈ D(x, r) which maximizes the dot product ai .x is the point x = x+ r
|ai| ai. Indeed

when |u| ≤ r (so that x = x+ u ∈ D(x, r)) and θ is the angle between ai and u, we have

ai .x = ai . (x+ u) = ai .x+ ai .u = ai .x+ |ai||u| cos θ

and this is maximized when |u| = r and θ = 0, that is when u = r
|ai| ai. Thus we have

D(x, r) ⊆ P ⇐⇒ for all i, max
{
ai .x∣∣x ∈ D(x, r)

}
≤ bi

⇐⇒ for all i, ai . (x+ r
|ai| ai

)
≤ bi

⇐⇒ for all i, ai .x+ r|ai| ≤ bi .

Thus we can solve the problem using the variables x1, x2, r, by maximizing z = r subject to ai .x+ |ai|r ≤ bi
for i = 1, 2, · · · , n. This is a linear programming problem.


