

1: Consider an LP with constraints $Ax = b$, $x \geq 0$ where

$$A = \begin{pmatrix} 1 & 0 & 1 & -3 & 2 \\ 2 & 1 & 1 & -2 & -1 \\ 1 & 1 & -1 & 2 & -6 \end{pmatrix} \quad \text{and } b = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}.$$

Find the first ordered triple in the list

$$(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), (2, 3, 4), (2, 3, 5), (2, 4, 5), (3, 4, 5)$$

which is a feasible basis for the LP.

2: Consider the LP in which we maximize $z = c_0 + c^T x$ subject to $Ax = b$ and $x \geq 0$ where

$$c_0 = 4, \quad c^T = (1, 1, 2, 1, -1, 3), \quad A = \begin{pmatrix} 1 & 2 & 1 & 3 & -1 & 5 \\ 2 & 5 & 3 & 4 & -1 & 7 \\ 1 & 3 & 1 & 2 & 0 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$

Put this LP into canonical form for the basis $\mathcal{B} = \{3, 4, 6\}$ in the following two ways.

(a) Perform row operations on the tableau $\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix}$ to obtain $\begin{pmatrix} -\tilde{c}^T & \tilde{c}_0 \\ \tilde{A} & \tilde{b} \end{pmatrix}$.

(b) Calculate $A_{\mathcal{B}}^{-1}$ then find \tilde{A} , \tilde{b} , \tilde{c}_0 and \tilde{c} using the formulas $\tilde{A} = A_{\mathcal{B}}^{-1}A$, $\tilde{b} = A_{\mathcal{B}}^{-1}b$, and $\tilde{c}_0 = c_0 - y^T b$ and $\tilde{c} = c + A^T y$ where $y = -A_{\mathcal{B}}^{-T}c_{\mathcal{B}}$.

3: Consider the LP in which we maximize $z = c^T x$ subject to $Ax = b$ and $x \geq 0$ where

$$A = \begin{pmatrix} 1 & 0 & 2 & -1 & -3 \\ 2 & 1 & 2 & -3 & -1 \\ 1 & -1 & 3 & -1 & -6 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} \quad \text{and } c = (2, 1, 3, 0, -4)^T.$$

Let $\mathcal{B} = \{1, 2, 3\}$, $\mathcal{B}' = \{1, 2, 4\}$, $\mathcal{B}'' = \{1, 3, 4\}$ and $\mathcal{B}''' = \{1, 4, 5\}$. Find the basic points \bar{x} , \bar{x}' , \bar{x}'' and \bar{x}''' corresponding to these bases, then find the values $z(\bar{x})$, $z(\bar{x}')$, $z(\bar{x}'')$ and $z(\bar{x}''')$, and determine the optimal solution to the given LP.

4: Consider the LP with tableau

$$\begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix} = \begin{pmatrix} 0 & -c_2 & -c_3 & 0 & -c_5 & 0 & c_0 \\ 1 & a_{12} & a_{13} & 0 & a_{15} & 0 & b_1 \\ 0 & a_{22} & a_{23} & 1 & a_{25} & 0 & b_2 \\ 0 & a_{32} & a_{33} & 0 & a_{35} & 1 & b_3 \end{pmatrix}.$$

Note that this LP is in canonical form for the basis $\mathcal{B} = \{1, 4, 6\}$. Suppose that $a_{33} \neq 0$ and let $\mathcal{B}' = \{1, 3, 4\}$.

(a) Find the 4×4 matrix E such that when this LP is put into canonical form for the basis \mathcal{B}' , it has tableau $E \begin{pmatrix} -c^T & c_0 \\ A & b \end{pmatrix}$.

(b) Find necessary and sufficient conditions on a_{ij} , b_i and c_i in order that \mathcal{B}' is feasible.

5: Consider the LP with tableau

$$\begin{pmatrix} -1 & 0 & -2 & -5 & 0 & -4 & 6 & 0 & 0 & -2 & 0 & 3 \\ 2 & 0 & 3 & 2 & 0 & 1 & 2 & 1 & 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & -3 & 0 & -1 & 0 & 0 & 0 & 4 & -2 & 0 \\ 1 & 0 & -2 & 4 & 0 & 3 & 1 & 0 & 1 & 1 & 1 & 2 \\ -2 & 0 & 1 & -2 & 1 & 0 & -3 & 0 & 0 & 3 & -3 & 0 \end{pmatrix}.$$

Note that, up to a permutation of the rows, the LP is in canonical form for the basis $\mathcal{B} = \{2, 5, 8, 9\}$.

- (a) For which choices of $k \notin \mathcal{B}$ and $l \in \mathcal{B}$ is $\mathcal{B}' = (\mathcal{B} \cup \{k\}) \setminus \{l\}$ a basis for the given LP?
- (b) For which of the choices in part (a) is the new basis \mathcal{B}' feasible?
- (c) For which of the choices in part (b) do we have $z(\bar{x}) = z(\bar{x}')$ (where \bar{x} is the basic point for \mathcal{B} and \bar{x}' is the basic point for \mathcal{B}')?
- (d) For which of the choices in part (b) do we have $z(\bar{x}') > z(\bar{x})$?
- (e) Which of the choices in part (d) gives the maximum increase $\Delta z = z(\bar{x}') - z(\bar{x})$.