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Zermelo

Ernst Zermelo (1871–1953)
1904 - A proof that every set can be well ordered
1908 - Investigations in the foundations of set theory

In 1900 Hilbert had stated at the International Congress of Mathemati-
cians that the question of whether every set could be well-ordered was one
of the important problems of mathematics. Cantor had asserted this was
true, and gave several faulty proofs. Then, in 1904, Zermelo published a
proof that every set can be well-ordered, using the Axiom of Choice. The
proof was regarded with suspicion by many. In 1908 he published a second
proof, still using the Axiom of Choice. Shortly thereafter it was noted that
the Axiom of Choice was actually equivalent to the Well-Ordering Principle
(modulo the other axioms of set theory), and subsequently many equivalents
were found, including Zorn’s Lemma1 and the linear ordering of sets (under
embedding).

But more important for mathematics was the 1908 paper on general set
theory. There he says:

Set theory is that branch of mathematics whose task is to investi-

gate the fundamental notions number , order , and function · · · to
develop thereby the logical foundations of all of arithmetic and anal-

ysis · · · . At present, however, the very existence of this discipline

seems to be threatened by certain contradictions · · · . In particu-

lar, in view of Russel’s antinomy · · · it no longer seems admissible

today to assign to an arbitrary logically definable notion a set, or

class, as its extension · · · . Under these circumstances there is at

this point nothing left for us to do but to proceed in the opposite

direction and, starting from set theory as it is historically given, to

seek out the principles required for establishing the foundation of

this mathematical discipline · · · . Now in the present paper I intend

to show how the entire theory created by Cantor and Dedekind can

1Originally proved by K. Kuratowski (1923) and R.L. Moore (1923); this was rediscov-
ered by M. Zorn in 1935, and credited to him by Bourbaki.
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be reduced to a few definitions and seven principles, or axioms, · · ·
. I have not yet even been able to prove rigorously that my axioms

are consistent · · · .

Zermelo starts off with a domain D of objects, among which are the
sets. He includes ≈ and ∈ in his language, and defines ⊆. He says that an
assertion ϕ is definite if

the fundamental relations of the domain, by means of the axioms

and universally valid laws of logic, determine whether it holds or

not.

A formula ϕ(x) is definite if for each x from the domain it is definite. Then
the axioms of Zermelo are (slightly rephrased):

i. (Axiom of extension) If two sets have the same elements then they are
equal.

ii. (Axiom of elementary sets) There is an empty set Ø; if a is in D then
there is a set whose only member is a; if a, b are in D then there is a
set whose only members are a and b.

iii. (Axiom of separation) Given a set A and a definite formula ϕ(x) there
is a subset B of A such that x ∈ B iff x ∈ A and ϕ(x) holds.

iv. (Axiom of power set) To every set A there corresponds a set P (A)
whose members are precisely the subsets of A.

v. (Axiom of union) To every set A there corresponds a set U(A) whose
members are precisely those elements belonging to elements of A.

vi. (Axiom of choice) If A is a set of nonempty pairwise disjoint sets then
there is a subset C(A) of U(A) which has exactly one member from
each member of A.

vii. (Axiom of infinity)2 There is at least one set I such that Ø ∈ I, and for
each a ∈ I we have {a} ∈ I

In the next few pages he defines A ∼ B (i.e., A and B are of the same
cardinality),3 derives Cantor’s theorems that the cardinality of A is less than
that of P (A), and that every infinite set has a denumerably infinite subset.

2Later versions would use a ∪ {a} ∈ I.
3Zermelo did not used ordered pairs. He starts with disjoint A and B and considers

the set M in P (A ∪B) consisting of doubletons with exactly one element from each of A

and B. Then he looks for R in M which provide a 1–1 correspondence.
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Let us use the traditional notation {a} for singleton, and {a, b} for dou-
bleton. Let

⋃

A be the union of the elements of A. One can define the basic
set operations by

• A ∩B = {x ∈ A : x ∈ B}

•
⋂

A = {x ∈
⋃

A : x ∈ a for all a ∈ A}

• A ∪B =
⋃

{A,B}

We can let the set ω of nonnegative integers4 be defined to be the smallest
set A which contains Ø and is closed under x ∈ A ⇒ {x} ∈ A. Then one
has a successor operation x′ = {x} on ω which satisfies Peano’s Axioms,
so one can develop the number systems. Well, actually you need to have
functions to do this. Using Kuratowski’s definition of ordered pair , namely

(a, b) = {{a}, {a, b}},

one can prove (from Zermelo’s axioms) that

(a, b) ≈ (c, d) ⇐⇒ a ≈ c & b ≈ d.

Then we can define
the Cartesian product of A and B:

A×B = {u ∈ P (P (A ∪B)) : x ∈ u iff x ≈ (a, b) for some a ∈ A, b ∈ B};

the set of relations between A and B:

Rel(A,B) = P (A×B)

and the set of functions from A to B:

Func(A,B) = {f ∈ Rel(A,B) : ∀a ∈ A ∃!b ∈ B (a, b) ∈ f}.

With these definitions we can now translate Dedekind’s development of the
natural numbers, rationals, reals and complex numbers into Zermelo’s set
theory, and prove the basic properties about the operations +,×; also we
can carry out Cantor’s study of sets, especially cardinals and ordinals. If
one then wants to do analysis, for example integration on [a, b], one takes

the definite integral
∫ b

a
dx as a certain element of Func(F ,R), where F is a

suitable subset of Func([a, b],R); and then you can prove the fundamental
theorem of calculus, etc., all from Zermelo’s seven axioms.

However Zermelo’s axioms had some obvious shortcomings. Skolem
noted in Some remarks on axiomatized set theory, 1922, that improvements
were needed, in particular

4Zermelo first looked at numbers in later articles.
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• A definition of a definite property.

• An axiom to ensure some reasonably large sets.5

For the first he suggested one use first-order formulas, i.e., formulas made
up from ∀, ∃, &, ∨, ¬, ∈, ≈, and variables. (Skolem used the notation of
Schröder.) Regarding the second he noted that if one has a model of set
theory then let M0 be the union of the P (n)({Ø}), the n-fold iterated power
set applied to the set {Ø}, n an integer; and then let M be the union of the
P (n)(M0). This gives a rather small submodel, i.e., a small collection of sets
that satisfies all of Zermelo’s axioms. In particular the set {P (n)(ω) : n ∈ N}
is not a set in this model. To guarantee the existence of such interesting
(not too large) sets he suggested the

• (Axiom of Replacement) if ϕ(x, y) is a definite formula such that for
every x there is at most one y making it true, then, for every set A

there is a set B such that y ∈ B holds iff there is an x in A such that
ϕ(x, y) holds.

Thus one can replace elements of A in the domain of ϕ with corresponding
elements of B. Replacement is actually stronger than separation, for if one
is given a set A and a definite property θ(x), define ϕ(x, y) to be the definite
property y ≈ x& θ(x). Then ϕ(x, y) applied to A gives {x ∈ A : θ(x)}.

The resulting set theory is called Zermelo-Fraenkel Choice (ZFC)6.
Skolem pointed out that Zermelo’s approach to set theory took us away

from the natural and intuitive possibilities (like Frege’s), and thus, as an
artificial construction, carried a loss of status:

Furthermore, it seems to be clear that, when founded in such an

axiomatic way, set theory cannot remain a privileged logical theory;

it is then placed on the same level as other axiomatic theories.

In 1917 Miramanoff noted the possibility of models with infinite descending
chains · · · ∈ y ∈ x. Such possibilities led von Neumann to formulate the
Axiom of Regularity, namely if x 6≈ Ø then for some y ∈ x we have x ∩ y ≈
Ø. This axiom is not always used — it seems to have no application to
mathematics, but it does make some proofs and definitions easier, e.g., that
of an ordinal.

5Fraenkel published similar observations the same year.
6For a leisurely treatment, i.e., in the spirit of Zermelo’s original paper, see Halmos’

Naive Set Theory.
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The treatment of ordinals evolved from Cantor’s abstraction from well-
ordered sets to equivalence classes of well-ordered sets to representative well-
ordered sets. The last step was initiated by von Neumann in Transfinite

numbers, 1923, and reached its modern brief form (assuming regularity) in
the work of Raphael Robinson (1937), namely an ordinal is a transitive set
(under ∈), all of whose elements are also transitive sets.

ZFC requires an infinite number of first-order axioms. The open question
of whether one could develop a set theory with a finite number of axioms was
answered in the affirmative by J. von Neumann in 1925. Actually he used
functions rather than sets as his primitive notion, and the current first-order
version is due to the reworking in the late 1930’s by (mainly) Bernays as well
as Gödel, and called von Neumann-Bernays-Gödel set theory, abbreviated
to NBG set theory.
Exercises

Problem 1 If R is a set of ordered pairs, show (using the axioms of ZFC) that
the domain and the range of R are also sets.

Problem 2 Given ω and + as sets, describe a set A and a first-order property ϕ(x)
such that the collection of integers Z is {x ∈ A : ϕ(x)} (and thus it is a set by the
axiom of separation). [Think of Z as sets of equivalence classes of ordered pairs of
integers, where two pairs of integers are in the same class iff the first coordinate
minus the second coordinate is the same in each case.]

Problem 3 [Kuratowski] Let us define (x, y) to be the set {{x}, {x, y}}. Use
the axioms of Zermelo to prove that (x, y) ≈ (u, v) ⇐⇒ x ≈ u& y ≈ v.

Could we use the definition {x, {x, y}} and achieve the same?

Problem 4 Show that x 6∈ x is a theorem in Z+(R)7

Problem 5 [R. Robinson] A set x is said to be transitive if u ∈ v ∈ x implies
u ∈ x. Suppose x and every element in x is a transitive set. Show that x is
well-ordered by ∈ (using Z+(R)).
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7Zermelo’s set theory with the axiom of regularity.
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