Notes prepared by Stanley Burris March 13, 2001

Relative strength of propositional calculi

Cook and Rechkow (1974/1979) looked at the question of whether or not there exists a sound propositional calculus \mathcal{P} with an adequate set of connectives such that tautologies have polynomial length derivations, i.e., such that there is a polynomial p(x) with the property that every tautology τ has a derivation Δ for which the total number of occurrences of symbols in Δ is no more than $p(|\tau|)$, $|\tau|$ being the length of the string τ . Such a \mathcal{P} is said to be polynomially bounded. (If a polynomially bounded propositional calculus exists then TAUT is in NP, and hence NP = co-NP.) In an effort to study the above question they introduced the notion of p-simulation (polynomial time simulation). A propositional calculus \mathcal{P}_1 p-simulates another propositional calculus \mathcal{P}_2 if there is a polynomial time translation from formulas of \mathcal{P}_2 to formulas of \mathcal{P}_1 and a polynomial time algorithm to convert derivations in \mathcal{P}_2 into derivations of the translates in \mathcal{P}_1 . If \mathcal{P}_1 and \mathcal{P}_2 p-simulate each other then we say they are p-equivalent. Cook and Rechkow focused on variations of well-known propositional calculi and arrived at the following relative strength diagram (where 'arrow' as well as 'is in the same box' in the diagram means 'p-simulates'):

p-simulation chart

The main results are:

- i. some system in one of the boxes is polynomially bounded iff all systems in the box are (for a fixed set of connectives);
- ii. resolution and truth-tables are not polynomially bounded.

References

- [1] S.A. Cook and R.A. Rechkow, On the lengths of proof in the propositional calculus, Preliminary version. *Proc. Sixth Annual ACM Symposium on Theory of Computing* (1974), 135–148. Corrections for "On the lengths of proofs in the propositional calculus". SIGACT News (1974), 15–22.
- [2] S.A. Cook and R.A. Rechkow, The relative efficiency of propositional proof systems. J. Symbolic Logic 44 (1979), 36–50.