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1 Quasi-Identity Logic

symbols ≈
function symbols
constant symbols
variables

In Chapter III of LMCS we looked at Birkhoff’s study of equational
logic. The next larger interesting fragment of first-order logic with equality
is the logic of quasi-identities.
Quasi-identities are universal Horn formulas of the form

∀~x [p1 ≈ q1 ∧ · · · pn ≈ qn =⇒ p ≈ q],

including the possibility that n = 0 and we simply have an equation. As with
identities, we usually omit writing the universal quantifiers. The study of
quasi-identities, and the corresponding model classes called quasi-varieties,
has been pursued mainly in Eastern Europe, following the lead of Mal’cev.
In Western Europe and North America the focus has been on identities
and varieties, a direction initiated by Birkhoff. The rules for working with
quasi-identities are not as simple, or standardized, as the rules of Birkhoff.
Of course the usual rules of first-order logic suffice to derive all the quasi-
identity consequences of a set of quasi-identities, but one might prefer to have
a logical system which only produces quasi-identities from quasi-identities.
One such was given by Selman [5] in 1972 with four axiom schemes and six
rules of inference. By considering a conjunction p1 ≈ q1 ∧ · · · ∧ pn ≈ qn as
a set of equations, rather than an abbreviation for some particular way of
inserting parentheses, we can omit his fifth rule (which handles rearranging
the parentheses and repeat copies of equations):
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AXIOMS:

(a) p ≈ q ∧ r ≈ s =⇒ r ≈ s

(b) p ≈ p

(c) p ≈ q ∧ q ≈ r =⇒ r ≈ p

(d) p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ f(p1, . . . , pn) ≈ f(q1, . . . , qn).

RULES:

(a)
r ≈ s

p ≈ q =⇒ r ≈ s

(b)
p ≈ q, p ≈ q =⇒ r ≈ s

r ≈ s

(c)
p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ p ≈ q, p ≈ q =⇒ r ≈ s

p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ p ≈ q, =⇒ r ≈ s

(d)
p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ p ≈ q, p ≈ q ∧ r1 ≈ s1 ∧ · · · ∧ rn ≈ sn =⇒ r ≈ s

p1 ≈ q1 ∧ · · · ∧ pn ≈ qn ∧ r1 ≈ s1 ∧ · · · ∧ rn ≈ sn =⇒ r ≈ s

(e)
p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ p ≈ q

σ(p1 ≈ q1 ∧ · · · ∧ pn ≈ qn =⇒ p ≈ q) (σ a substitution)

We will not go into quasi-identity logic except to make some remarks on
the complexity of quasi-identity theories. We note that the quasi-identity
theory of a class K of algebras is the same as that of the quasi-variety Q(K)
generated by K, as well as of the variety V (K) generated by K. In the latter
context the study of quasi-identity theory is better known as the uniform
word problem for the variety.

1.1 Presentations and word problems

Word problems were one of the first places in mathematics where mathe-
maticians were able to apply the concepts of algorithm (developed in the
mid 1930’s) to obtain undecidability results. Let Σ be a set of equations in
the language F ∪ C.
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DEFINITION 1 A presentation Π with respect to Σ is an ordered pair
(G,R) where G is a set of constant symbols disjoint from C, called the set
of generators, and R is a set of ground equations over G called the defining
relations.

Presentations of groups came early in the century in the study of alge-
braic topology. Of course associated with the presentation one had a group.

LEMMA 2 Given a presentation Π = (G,R) with respect to Σ, the relation
θΠ = {(t1, t2) ∈ TG∪C × TG∪C : Σ ∪ R ` t1 ≈ t2} is a congruence on TG∪C .

Proof. We observed this fact in the proof of the Birkhoff completeness
theorem. .

DEFINITION 3 Given a presentation Π over Σ, let AΠ be the algebra
TG∪C/θΠ, the algebra defined by the presentation.

EXAMPLE 4 Up to isomorphism we have

(a) ({a, b}, {ab ≈ ba}) over groups1 defines Z× Z

(b) (X,Ø) over Σ defines the free algebra FΣ(X) in the equational class
determined by Σ

(c) (X,Ø) over rings2 defines the polynomial ring Z[X]

(d) (Ø, {1 + · · ·+ 1
︸ ︷︷ ︸

n

≈ 0}) over rings defines Zn, the integers modulo n.

(e) ({a}, {a2 + a + 1 ≈ 0, 1 + 1 ≈ 0}) over rings defines GF(4), the 4-
element Galois field.

DEFINITION 5 The problem of determining which ground equations
over G follow from Σ ∪ R is called the word problem for Π. If there is
an algorithm for this problem then the word problem for Π is solvable) (or
decidable); otherwise it is unsolvable (or undecidable).

1In groups one can write all the defining relations in the form w ≈ e, e the identity
element, and thus one can consider the set R (of defining relators) as a set of words (i.e.,
terms) w.

2In rings one can write all the defining relations in the form w ≈ 0, and thus one can
consider R as a set of words w (i.e., terms) from TG∪C .
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DEFINITION 6 If there is a single algorithm for solving the word problem
for any presentation Π over Σ we say the word problem for Σ is (uniformly)
solvable (or decidable); otherwise it is unsolvable3 (or undecidable).

A simple example of a semigroup presentation with unsolvable word
problem was found by Tsentin:

generators relations

a b c d e ac ≈ ca ad ≈ da
bc ≈ cb bd ≈ db

abac ≈ abacc
eca ≈ ae edb ≈ be

A. Mekler, E. Nelson, and S. Shelah [4] have proved that there is a finite
Σ such that the word problem for Σ is unsolvable, but for each presentation
Π over Σ the word problem is solvable.
The use of finite partial algebras is popular in methods for showing the

word problem is solvable; in particular the following are equivalent for a
variety V :

• The uniform word problem for V is solvable.

• There is an algorithm to determine which finite partial algebras can
be embedded into some member of V .

• One has an algorithm to find the smallest congruence θ of a finite
partial algebra P such that P/θ embeds into some member of V .

One can also show that the uniform word problem for V is polynomial
time solvable iff one can find the congruence θ in the last item above in
polynomial time. And if the universal theory of V ?, the relational version
of V , is finitely axiomatizable then the uniform word problem is solvable in
polynomial time. (See Burris [1].)
An interesting example is that of commutative semigroups, where each

finite presentation Π has a word problem solvable in polynomial time, but
the uniform word problem for commutative semigroups is exponential space
complete (due to Mayr & Meyer [3]; see also Kharlampovich & Sapir [2]).
In the table below we give a few examples concerning the solvability of

the word problem for finite presentations. Rather than give a defining set of
equations Σ it is simpler to specify the class determined by the intended Σ.

3Warning: this eminently sensible definition has not been commonly used — the word
problem for Σ has been called unsolvable provided there is a single presentation with
unsolvable word problem
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Σ discovered by
semigroups undecidable Post/Markov 1947
groups undecidable Novikov 1955
lattices decidable Skolem 1920
modular lattices undecidable Hutchinson 1973
quasigroups decidable Evans 1953
loops decidable Evans 1953

Exercises

Problem 1 Show that Example 4 (a) has a solvable word problem.

Problem 2 Show that Example 4 (c) has a solvable word problem.

Problem 3 If AΠ is finite, show Π has a solvable word problem.

Problem 4 If AΠ is residually finite, show Π has a solvable word problem.

Problem 5 If AΠ is simple, show Π has a solvable word problem.
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