Notes prepared by
Stanley Burris
February 10, 1997

An algorithm to find derivations of tautologies

The proof of the completeness of PC given in Theorem I11.9.9 of LMCS
actually provides us with a straightforward algorithm to find derivations of
tautologies. If we are given a tautology F(Pi, ..., P,) then we diagram the
algorithm as follows:

(1): apply conjunction
to the axioms

(2): putinto DNF using
simple replacements

i A (3): put the formula F into DNF using

(4): then reverse simple replacements;

the steps of (3)

How to find a derivation

Thus we see the three key parts of the algorithm:

1. find a derivation of the tautology (P V- P;)A---A (P, V — P,) using
the conjunction rule;

2. derive the disjunctive normal form of this tautology using simple re-
placements based on the distributive, commutative and associative
laws;

3. use simple replacements to transform F(P,..., P,) into (the same)
disjunctive normal form;

4. then reverse the order of the steps of (3), to transform the disjunctive
normal form into the tautology F(Pi,..., P,).

The first part requires 2n — 1 steps, namely

1. PV-P axiom
n. P,V-P, axiom

n+1: (P1V_|P1)/\(P2V_|P2) CZ]_,2

2n-1: (---(PAV-P)AN--)A(P,V—=P,) C:n2n-2

For the second part one needs at least 2”1 — n — 3 steps (just to apply
the distributive laws). We illustrate for the case n = 2. At this point our
current notation becomes difficult to read, so for the rest of this subsection
we switch to an abbreviated notation, namely we will use F'G for FAG, and
F for = F. Also we will (for the time being) say A has higher precedence
than V, so FG V H means (F AG)V H. This will allow us to dispense with
many parentheses.

1: P VP, axiom
2: P,V Py axiom
3: (PLV Py)(PyV Py) C: 1,2
4: (PLV P)PVv (P V Pp)Py SR: 3 (9)
5: Py(PLV Pp)V (PLV P1)P, SR: 4 (4)
6: Pa(PyV P1)V Py(PV Py) SR: 5 (4)
7: (PP V P,P1)V Py(P, V Py) SR: 6 (9)
8: (PP, V P,P1)V (PyP,V PyP;) SR: 7 (9)

So we needed the first 3 steps to obtain (PyV P1)(PyV P3), the first part of
the procedure, and then 5 steps to put this into disjunctive normal form. Of
course one may want to rewrite this so that one has the DNF-constituents

ordered according to the usual ordering of the rows of a truth table, and left
associated, namely as

((Plpg V Plﬁg) V ﬁlpz) V ?1?2.

After all, to have a DNF one needs to specify the order in which the DNF
constituents are written, and how they are parenthesized. To go from line (8)
above to this form will require 8 additional steps, applying commutativity
and associativity (as simple replacement rules):

9: (P,P,V P,P;)V (PyP,V PyP;) SR:8 (4)
10: (PiP,V P1P,)V (P2P;V P,P;) SR:9 (4)
11: (PP, V P1Py)V (PPyV PyP;) SR: 10 (4

V (PPyV P1P;) SR:11 (4

)

14: P1P2 V (ﬁlpz vV Plﬁz)) vV Flﬁg SR: 13

15: P1P2\/(P1?2\/ﬁlpg))\/ﬁ1ﬁ2 SR 14
)

(
(
(
12: (P PyV P, Py)
(
(
(
16: ((PLP,V P,Py)V PiP,)V PP, SR: 15 (5)

(4)
(4)
13: ((PiP,V PiP,)V PiPy)V PiP; SR: 12 (5)
(5)
(3)
(

For larger n the second part of the algorithm explodes in the amount of
work one needs to do because of the exponential lower bound 2! — n — 3
on the number of steps given above. For n = 5 variables this is already 56
steps, i.e., at least a page of work. And we still have the third part to worry
about. This can be the wild card. If F is almost in DNF then there will not
be much work to do. But it can be the most tedious part of the algorithm.

Let us return to the two examples that we presented after defining the
notion of derivation (on page 76) and apply the above algorithm to them,
and compare the results with our earlier derivations.

EXAMPLE 1 (See Example I1.9.5) The following uses the above algo-
rithm to derive P — (P — P).

PVvV-P axiom
-PVP SR: 1 (
(-PVv—-P)VP SR:2(
-PVv(-PVvP) SR:3(5
-PV(P—P) SR:4(20)
P—(P—P) SR:5(20)

D Ot AW N

This compares quite favorably to the derivation in Example I1.9.5, requiring
only 1 more step. Part 1 and part 2 of the algorithm collapse into the first
step above. Reading steps 1 through 6, in reverse order, we see the procedure
for putting step 6 into its disjunctive normal form.

EXAMPLE 2 (See Example I1.9.6) The following uses the algorithm to
derive P — (Q — P).

1: PVP axiom

2: QVvVQ axiom

3 (PVP)QVQ) C: 1,2

4: (PVP)QV(PVP)Q SR: 3 (9)
5 Q(PVP)V(PVP)Q SR: 4 (4)
6: QPVP)VQ(PVP) SR: 5 (4)
7. (QPvQP)vVQ(PVP) SR: 6 (9)
8 (QPvQP)vV(QPVQP) SR: 7 (9)
9: (PQVQP)V(QPVQP) SR: 8 (4)
10: (PQVPQ)V(QPVQP) SR: 9 (4)
11: (PQVPQ)V(PQVQP) SR: 10 (4)
12: (PQVPQ)V(PQVPQ) SR: 11 (4)
13: (PQVPQQ)VPQ)VPQ SR: 12 (5)
14: (PQV(PQVPQ)VPQ SR: 13 (5)
15: (PQV(PQVPQ)VPQ SR: 14 (3)
16: (PQVPQ)V(PQVPQ) SR: 15 (5)
17: (PQVPQ)V(PQV(PQVPQ)) SR: 16 (1)
18: (PQVPQ)V((PQVPQ)VPQ) SR: 17 (5)
19: (PQV(PQVPQR)V(PQVPQ)VPQ SR: 18 (1)
20: ((PQVPQ)VPQR)V((PQVPQ)VPQ)) SR: 19 (5)
21: (PQVPQ)V(PQV(PQVPQ)VPQ)) SR: 20 (5)
22: (PQVPQ)V((PQV(PQVPQ)VPQ) SR: 21 (5)
23: (PQVPQ)V(((PQVPQ)VPQ)VPQ) SR: 22 (3)
24: (PQVPQ)V((PQVPQ)V(PQVPQ) SR: 23 (5)
25: (PQVPQ)V((PQVPQ)V(PQVQP)) SR: 24 (4)
26: (PQVPQ)V(PQVPQ)V(QPVQP)) SR: 25 (4)
27 (PQVPQ)V((PQVPQQ)VQ(PVP)) SR: 26 (9)
28: (PQVPQ)V((PQVPQ)VQL) SR: 27 (11)
29: (PQVPQ)V((PQVPQ)VQ) SR: 28 (15)
30: (PQVPQ)V(P(QVQ)VQ) SR: 29 (9)
31: (PQVPQ)V(PLVQ) SR: 30 (11)

32: (PQVPQ)V(PVQ)) SR: 31 (15)
33: PQvQ)V(PVQ) SR: 32 (9)
34: P1V(PVQ) SR: 33 (11)
35: PV(PVQ) SR: 34 (15)
36: (PVQ)VP SR: 35 (3)
31 PV(Q VP) SR: 36 (5)
38: PV(Q—P) SR: 37 (20)
39: P—(Q— P) SR: 38 (20)

This is rather painful when compared to the 7 line derivation in Example
I1.9.6. Looking over the steps we see that part 1 is steps 1-3, part 2 is steps
3-13, part 3 is steps 42-13, and part 4 is steps 13-42. In this case we see
that part 3 is the most demanding of our resources.

So the moral of this section is: yes, we do have a straightforward algo-
rithm to find derivations. But it is probably a much better idea to look for
a short derivation taking advantage of the many rules available in PC. That
is why we have so many more rules than are needed to prove completeness.

