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Countable Countermodels: Löwenheim.

Löwenheim (1878–1940)
1915 - On possibilities in the Calculus of Relations

Löwenheim’s 1915 paper

• opened the door to the serious study of model theory by bringing in
the size of an infinite model of a first-order sentence

• gave a canonical procedure to build a countable countermodel to a
first-order sentence – this initiated some of the most popular work in
automated theorem proving (mainly attributed to Herbrand)

• showed that statements in the first-order predicate calculus (with equal-
ity) for monadic predicates which were valid in finite domains were
valid in all domains

• pointed out that first-order relational logic with equality was adequate
to express all mathematical problems

• showed that one only needed binary relations for the previous item.

This paper was such a turning point in the development of logic that it
is worth discussing each section. In particular we will later see how much
Skolem was influenced by it.

Section 1
Löwenheim presents his framework for the paper, namely working in the
calculus of relations as presented by Schröder. He introduces first-order
statements under the name numerical equations.1

Section 2
Schröder seems to claim that first-order formulas are equivalent to quantifier-
free formulas. Löwenheim sketches Korselt’s argument that this cannot be

1The notion of a first-order property (i.e., quantifiers can only range over the elements
of the domain) was introduced, in Volume III of Schröder’s Algebra of Logic, as part of his
study of the Calculus of Relations. Schröder was more interested in quantifying over the
relations than over the domain elements, and he did little with the first-order statements.
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the case: a first-order statement asserting the existence of 4 distinct elements
cannot be expressed by an equation in the Calculus of Relations.

After thus establishing the usefulness of quantifiers in first-order expres-
sions he turns to a remarkable blending of logic and set theory by showing
that

given an infinite domain D and a first-order statement ϕ which
holds in all finite structures, but not in all structures, then it is
impossible for ϕ to hold in all structures on D.

In 1920 this would be restated and reproved, by Skolem, to give the famous
Löwenheim-Skolem theorem.

The method by which Löwenheim proved this theorem is as fascinating as
the theorem itself (indeed more fascinating for those in automated theorem
proving). Given a first-order statement ϕ, he first puts ¬ϕ into a normal
form by treating a universal quantifier as an AND over the domain, and an
existential quantifier as an OR over the domain; and then distributes to get
a disjunctive form.2.

From the normal form one takes the universally quantified part ψ and
uses the fact that ¬ϕ has a model on a given domain iff ψ has. (ψ will later
become the Skolemized form of ¬ϕ). Thus ϕ has a countermodel [on a given
domain] iff ψ is satisfiable [on that domain].

Next Löwenheim gives a canonical procedure to build a finitely branching
tree of finite partial structures, successive nodes being extensions of previous
nodes, such that:

1. either every branch has a node which does not “satisfy” ψ, and this
will imply that ψ, hence ϕ, cannot be satisfied; or

2. some branch is such that every node “satisfies” ψ. Then the union of
the nodes along the branch gives a countable (perhaps finite) model
of ψ, and thus a countable countermodel to ϕ.

He claims that he can use his results to establish some independence and
dependence results for various systems of axioms of the Calculus of Classes.
He only shows how one such system (of Müller) can be expressed in first-
order form (using a binary predicate for subsumption), and says he will give
details of the independence proofs in a later paper (which never appeared).

2This procedure is described in Schröder’s third volume. By avoiding the digression
through what appears to be an infinitary language – yielding a result which depends on
the domain – Skolem introduced his presentation of this normal form in 1928. The process
of creating this normal form is now called Skolemizing
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Löwenheim goes on to show that such a theorem cannot be proved for
higher-order logic because one can write down a sentence which says the
domain is not finite or countably infinite. Thus for the first time a powerful
distinction is made between first-order and higher-order logics.

Section 3
The main theorem of this section is that

a first-order sentence with only monadic relations (i.e., relations
with only one argument) which is true on all finite domains (no
matter how the relations are interpreted) must be true on all
domains.

At the end of this section he gives, by example, his algorithm to determine
if such a sentence is true on all domains.

Section 4
Finally he turns to the expressive strength of the first-order calculus of
relations, and says that anyone familiar with the development of logic as
in Principia Mathematica can see that all mathematical assertions can be
expressed by first-order statements in the calculus of relations. Then he goes
on to show in some detail that it suffices to use only binary relations. (The
last statement had been made, without justification, by Schröder in his Vol.
III.)
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