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Hilbert and Ackermann’s 1928 Logic Book

D. Hilbert (1862-1943) and W. Ackermann (1896-1962)
1928 - Principles of Theoretical Logic

Hilbert gave the following courses on logic and foundations in the period
1917-1922:

Principles of Mathematics Winter semester 1917/1918
Logic Calculus Winter semester 1920
Foundations of Mathematics Winter semester 1921/22

He received considerable help in the preparation and eventual write up of
these lectures from Bernays. This material was subsequently reworked by
Ackermann into the book Principles of Theoretical Logic (1928) by Hilbert
and Ackermann. The book was intended as an introduction to mathemati-
cal logic, and to the forthcoming book of Hilbert and Bernays' (dedicated
essentially to the study of first-order number theory). In 120 pages they
cover:

Chap. I: the propositional calculus,
Chap. II: the calculus of classes,

Chap. III: (many-sorted) first-order logic of relations (without equality),
and

Chap. IV: the higher order calculus of relations (without equality).

Let us make a few comments about each of these chapters.

Chapter I discusses the basic connectives A, V, =, <=, = (they use
the notation &, V, =, &, 7), the commutative, associative and distributive
laws, and reducing the number of connectives needed. They say (p. 9):

As a curiosity let it be noted that one can get by with a single logical
sign, as Sheffer showed.

!Thanks to the work of Godel (1930, 1931) this project was delayed, and it expanded
into two volumes (1934, 1938).



This is closer to the importance now attached to Sheffer’s discovery than
Whitehead and Russell’s statement in the second edition of Principia Math-
ematica that Sheffer’s reduction of the propositional logic to a single binary
connective was the most important development in logic since their first edi-
tion had appeared. Indeed Whitehead and Russell added the necessary text
to Principia to reduce their development, based on V and —, to the Sheffer
stroke.

Next Hilbert and Ackermann show how to put propositions in conjunc-
tive, or disjunctive, normal form, and show how one can use this to describe
all the consequences of a finite set of propositions. Then they discuss how
one determines if a statement is a tautology (they say universally valid), or
satisfiable.

They follow Principia in the axiomatization of the propositional calcu-
lus, using the work of Bernays (1926) to reduce the list of axioms from 5 to 4.
Turning to the questions associated with the axiomatic method (Theoretical
Logic, p. 29) they say:

The most important of the questions which arise are those of consistency,
independence, and completeness.

After noting that one can derive precisely the tautologies in their sys-
tem, the solutions of these questions for this propositional calculus, due to
Bernays (1926), are presented. The completeness result is the strong version,
namely that adding any non-tautology to the axioms permits the derivation
of a contradiction, and hence the derivation of all propositional formulas.

The brief treatment of the calculus of classes in Chapter II is actually a
nonaxiomatic version of the first-order logic of unary predicates, a system
which is considerably more expressive than the traditional calculus of classes,
and in which one can formulate Aristotle’s syllogisms.

Chapter III starts off with a famous quote of Kant:

It is noteworthy that till now it [logic] has not been able to take a
single step forward [beyond Aristotle], and thus to all appearances
seems to be closed and compete.

Then they say about the logic of Aristotle:

It fails everywhere that it comes to giving a symbolic representation
to a relation between several objects - - -.

and that such a situation (Theoretical Logic, p. 44):

exists in almost all complicated judgements.



The first-order system they develop uses relations and constant symbols,
but equality is not a part of the logic. Furthermore, their relations are
many-sorted, both in their examples and formalized logic ( Theoretical Logic,
pp. 45, 53, 70). In the second edition (1937) the formal version is one-
sorted, but the examples are still many-sorted; and a technique using unary
domain predicates for converting from many-sorted to one-sorted is given
(Theoretical Logic, p. 105).

As one example of how to express mathematics in their formal system
they turn to (one-sorted) natural numbers, using two binary relation symbols
= and F (for successor) and the constant symbol 1, and write out three
properties:

i Vady [F(x,y) AVz F(z,2) = y = 2]
ii. ~3xF(x,1)

. Ve[z o 1 = Jy(F(y,z) A\Vz(F(z,2) = y~=~uzx))].

Their formal system is the following:
1. Propositional variables X,Y, - -
2. Object variables x,y, - - -
3. Relation symbols F( ),G( ),---
4. Connectives: V and =. (X = Y means - X VY.)
5. Quantifiers: V and 3. (They use (z) for Vz, and (Ex) for 3zx.)

6. Axioms:

XVX = X

X = XVY

XVY = YVX

(X =Y) = [ZVX = ZVY]
Vo F(x) = F(x)



7. Rules of Inference:
substitution rule
modus ponens

e = P(z)
» = Vri(x)

(provided z is not free in )

Y(z) = ¢
Jr(x) = ¢

The simple form of the last two axioms and the last rule of inference
was due to Bernays. Using this system they show elementary facts, such as
every formula can be put in prenex form.

Then they turn to the questions that they have designated as important.
Using a one-element universe they show the above axiom system is consistent
(recall Frege’s system was not consistent). Then they say (Theoretical Logic,
p. 65):

With this we have absolutely no guarantee that the introduction of
assumptions, in symbolic form, to whose interpretation there is no
objection, keeps the system of derivable formulas consistent. For
example, there is the unanswered question of whether the addition
of the axioms of mathematics to our calculus leads to the provability
of every formula. The difficulty of this problem, whose solution has
a central significance for mathematics, is in no way comparable to
that of the problem just handled by us ---. To successfully mount
an attack on this problem, D. Hilbert has developed a special theory.

Ackermann’s proof that the above system is not complete in the stronger
sense is given (Theoretical Logic, pp. 66-68), namely they show 3z F'(z) —
VaF(x) and its negation are not derivable. Then the following is said (The-
oretical Logic, p. 68):

It is still an unsolved problem as to whether the axiom system is
complete in the sense that all logical formulas which are valid in
every domain can be derived. It can only be stated on empirical
grounds that this axiom system has always been adequate in the
applications. The independence of the axioms has not been inves-
tigated.



After some examples of using this system, they turn to the decision
problem in §11 of Chapter III. We quote (Theoretical Logic, p. 72):

According to the methods characterized by the last examples
one can apply the first-order calculus in particular to the axiomatic
treatment of theories - - -.

Once logical formalism is established one can expect that a sys-
tematic, so-to-say computational treatment of logical formulas is
possible, which would somewhat correspond to the theory of equa-
tions in algebra.

We met a well-developed algebra of logic in the propositional
calculus. The most important problems solved there were the universal
validity and satisfiability of a logical expression. Both problems are
called the decision problem - - -

(Theoretical Logic, p. 73)
The two problems are dual to each other. If an expression is not
universally valid then its negation is satisfiable, and conversely.

The decision problem for first-order logic now presents itself - - - .
One can --- restrict oneself to the case where the propositional
variables do not appear - - -.

The decision problem is solved if one knows a process which,
given a logical expression, permits the determination of its validity
resp. satisfiability.

The solution of the decision problem is of fundamental impor-
tance for the theory of all subjects whose theorems are capable of
being logically derived from finitely many axioms - - -.

(Theoretical Logic, p. 74)

We want to make it clear that for the solution of the decision prob-
lem a process would be given by which nonderivability can, in princi-
ple, be determined, even though the difficulties of the process would
make practical use illusory - - -.

(Theoretical Logic, p. 77)
- the decision problem be designated as the main problem of
mathematical logic.
- in first-order logic the discovery of a general decision proce-
dure is still a difficult unsolved problem - - -



In the last section of Chapter III they give Lowenheim’s decision proce-
dure for first-order statements involving only unary relation symbols, namely
one shows that it suffices to examine all domains of size less than or equal
to 2%, where k is the number of unary predicate symbols in the statement.
Consequently (p. 80)

... postulating the validity resp. satisfiability of a logical state-
ment is equivalent to a statement about the size of the domain.

In the most general sense one can say the decision problem
is solved if one has a procedure that determines for each logical
expression for which domains it is valid resp. satisfiable.

One can also pose the simpler problem of when a given expression
is valid for all domains

and when not. This would suffice, with the help of the decision process,
to answer whether a given statement of an axiomatically based subject was
provable from the axioms.

Then they point out that one cannot hope for a process based on examin-
ing finite domains, as in the unary predicate calculus; but that Lowenheim’s
theorem gives a strong analog, namely a statement is valid in all domains
iff it is valid in a countably infinite domain. Then they attempt to tie the
decision problem to the completeness problem (Theoretical Logic, p. 80):

Examples of formulas which are valid in every domain are those
derived from the predicate calculus. Since one suspects that this
system gives all such [valid] formulas, one would move closer to
the solution of the decision problem with a characterization of the
formulas provable in the system.

A general solution of the decision problem, whether in the first
or second formulation, has not appeared till now. Special cases
of the decision problem --- have been attacked and solved by P.
Bernays, and M. Schoenfinkel, as well as W. Ackermann.

Finally they note that Lowenheim showed one could restrict ones atten-
tion to unary and binary predicates.?

Chapter IV starts out by trying to show that one needs to extend first-
order logic to handle basic mathematical concepts. The extension takes

20ne finds Schréder alluding to this fact in Vol. III of Algebra der Logik, but he does
not try to justify his remarks.



place by allowing quantification of relation symbols. Then one can express
complete induction by (Theoretical Logic, p. 83):

[P(1) AVaVy (P(z) A Seq(z,y) = P(y))] = Vo P(z)
or, to be more explicit,
one can put the universal quantifier (P) in front of the formula.

Identity between = and y, = (z,vy), is defined by VF F(x) < F(y).
Then they say (Theoretical Logic, p. 86):

The solution of this general decision problem (for the extended logic)
would not only permit us to answer questions about the provability
of simple geometric theorems, but it would also, at least in principle,
make possible the decision about the provability, resp. nonprovabil-
ity, of an arbitrary mathematical statement.

The first-order calculus was fine for a few special theories,

But as soon as one makes the foundations of theories, especially
of mathematical theories, as the object of investigation --- the
extended calculus is indispensable.

The first important application of the extended calculus is to numbers. In-
dividual numbers are realized as properties of predicates, e.g.,

0(F) =: -3z F(x)

L(F) = 3z [F(z) AVy (F(y) = = (z,9))].
The condition for ® being a [cardinal] number is
VEVG [(2(F) ANP(G) = SC(F,G) N (®(F)ANSC(F,G) = @(G))],

where SC(F, G) says there is a 1-to-1 correspondence between the elements
satisfying F' and those satisfying G. Having set up the definitions and as-
suming an infinite domain, they say (footnoting Whitehead and Russell)
that:

It is also of particular interest that the number theoretic axioms
become logically provable theorems.



They develop set theory in this extended calculus by saying that sets are the
extension of unary predicates; thus two predicates F' and G determine the
same set iff Vz F(x) <= G(x) holds, which is abbreviated to Aeq(F,G).
Then properties of sets correspond to unary predicates P of unary predi-
cates, where P is invariant under Aeq. Sets of ordered pairs correspond to
binary predicates, etc. Under this translation a number becomes a set of
sets of individuals from the domain, namely a number is the set of all sets
equivalent to a given set. Their development of set theory ends with union,
intersection, ordered sets and well-ordered sets defined, and they say that
all the usual concepts of set theory can be expressed symbolically in their
system.

Having shown the expressive power of the extended calculus of relations
they turn to the problem of finding axioms and rules of inference. Obvi-
ous generalizations from the first-order logic lead to contradictions through
the well-known paradoxes. Finally they outline Whitehead and Russell’s
ramified theory of types (with its questionable axiom of reducibility) which
allows one to give axioms and rules of inference generalizing those of the
first-order, avoiding the usual encoding of the paradoxes as contradictions,
and being strong enough to carry out traditional mathematics. After men-
tioning that the decision problem also applies to the system of Principia,
the book closes with Hilbert claiming to have a development of extended
logic, which will soon appear, which avoids the difficulties of the axiom of
reducibility.

Looking back over this book we see that its purpose is to present formal
systems, and give examples. There are almost no real theorems of mathe-
matical logic proved, or stated, after the development of the propositional
calculus in Chapter I; the main exceptions being a proof of Lowenheim’s
decision process for the first-order unary relational logic, and the statement
of the Lowenheim-Skolem theorem. First-order set theory is not even men-
tioned.
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