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1 Arithmetic I1

We return to the two first-order formalizations of arithmetic to make some
remarks on how the study of these subjects can be developed further.

1.1 Peano Arithmetic: Definability

Since First-order Arithmetic is known to be rather intractable (it is undecid-
able), when looking for an effective approach to number theory, something
which one might use for an automated theorem prover, it is natural to con-
sider Peano Arithmetic since, as we said, all standard theorems of number
theory which can be formulated as first-order statements can be derived
from PA. To see that this is true one needs to return to the formulations in
the previous section and show that they can be used in PA.

DEFINITION 1

(a) A relation r C w" is defined in PA by the formula ¢(z1,... ,z,) if for

each (k1,...,k,) € w™ we have
(k1,... kn) €T — PAF o(ki,... k)
(l{}l,...,kn)¢1" — PAI_—@O(EI,,ETL)
(b) A function f : w"™ = wis defined in PA by the formula (x4, ... ,Zn,y)
if for each (k1,... ,kn, k) € ™! we have
flhi, ... k) =k = PAF o(ky,...  kn, k)
flhi, ... kn) #k — PA F —p(ky,. ..  kn, k)
and PAF 3y ok, ... kn,y)

In his 1931 paper Gédel showed that the relations and functions discussed
in the previous section on first-order arithmetic are indeed definable in PA®.
Using this expressive power of PA Gddel went on to give explicit first-order

! As are all decidable relations and computable functions.



sentences which are true in w but cannot be derived from PA.

EXERCISES

Problem 1
(a) Show < and < are definable in PA.
(b) Show | is definable in PA.
(c) Show prime(x) is definable in PA.
(d) Show coprime(z) is definable in PA.
(e) Show Gédel’s 5 function is definable in PA.
(f) Show zV is definable in PA.

1.2 The Two Arithmetics

Let us briefly review the two versions of the natural numbers which we have
considered.

First-Order Arithmetic

e Symbols A,V,-, = ,V,d,+,x,0,1 and
variables
e Formulas first-order formulas

TRUTH DERIVATION
o Fo
means @ is true of the nonnegative
numbers
AXI0MS RULES OF INFERENCE

nothing reasonable exists

We know from the work of Godel (1931), Church and Rosser (1936) that
we cannot hope for a reasonable? sound and complete logic to derive all the
first-order truths of number theory. But if we are willing to settle for some

2reasonable roughly means that we want to be able to generate the axioms and rules
of inference.



of the truths of number theory we can try PA, the first-order formulation of
Peano’s axioms. Then indeed we have a logic system

Peano Arithmetic

e Symbols A,V,-, = ,V,d,+,x,0,1 and
variables
e Formulas first-order formulas

TRUTH DERIVATION
PA o PAtF ¢

means ¢ is true in any structure in
which PA is true

AXIoMS RULES OF INFERENCE
PA usual rules for first-order logic

which is sound and complete (provided it is consistent); and all known the-
orems of traditional number theory which can be expressed in first-order
form can be derived from this system. There are some very interesting
open problems which can be expressed in first-order arithmetic, e.g., the
Riemann Hypothesis. We do not know if these questions can be settled by
Peano Arithmetic — the completeness is with respect to all models of PA,
not just the nonnegative numbers.
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