1 Arithmetic I

1.1 First-order Arithmetic

Let $\boldsymbol{\omega}$ be the structure $(\omega,+, \times, 0,1)$, where ω is the set of non-negative integers. First-order Arithmetic is $\operatorname{Th}(\boldsymbol{\omega})$, the set of first-order statements in the language $\{+, \times, 0,1\}$ which are true in $\boldsymbol{\omega}$. Much of the fascination of working with first-order number theory comes from the simple fact that there are so many assertions P, including unsolved problems, in number theory for which one can routinely exhibit a specific first-order φ such that the assertion P is true iff $\boldsymbol{\omega} \models \varphi$. We say that such assertions can be expressed in first-order arithmetic.

This contrasts sharply with Presburger Arithmetic, i.e., the first-order theory of $(Z,+, 0,1,<)$, or the first-order theory for the calculus of classes, i.e., the first-order theory of all structures $\left(P(U), \cup, \cap,{ }^{\prime}, 0,1\right)$. For these two examples there are no known unsettled assertions in mathematics for which one can find such a corresponding first-order φ.

In this section we look at the basic ideas for translating number-theoretic assertions into first-order arithmetic. The starting point is to express some well known relations by first-order formulas.

DEFINITION 1 For $n \in \omega$ we define the term \bar{n} by: $\overline{0}=0, \overline{n+1}=\bar{n}+1$.
\bar{n} is an obvious choice for a term to represent the number n.
DEFINITION 2 A relation $r \subseteq \omega^{n}$ is definable on $\boldsymbol{\omega}$ if there is a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ such that $r=\varphi^{\boldsymbol{\omega}}$, i.e.,

$$
\left(k_{1}, \ldots, k_{n}\right) \in r \quad \text { iff } \quad \boldsymbol{\omega} \models \varphi\left(\bar{k}_{1}, \ldots, \bar{k}_{n}\right) .
$$

Now we look at a few definable relations:

| Defining Formula |
| ---: | :--- |
| Relation $\exists z(x+z \approx y)$
 $x<y$ $x \not \approx y \wedge x \leq y$
 $x \mid y$ $\exists z(x z \approx y)$
 $x \equiv y \bmod z$ $\exists u[(u+x \approx y \vee y+u \approx x) \wedge z \mid u]$
 $\operatorname{prime}(x)$ $(x \not \approx 1) \wedge \forall y(y \mid x \Longrightarrow y \approx 1 \vee y \approx x)$
 coprime (x, y) $\forall u(u\|x \wedge u\| y \Longrightarrow u \approx 1)$ |

With just these formulas we can express important results, for Euclid's theorem on the infinitude of primes is given by

$$
\forall x \exists y x<y \wedge \text { prime }(y)
$$

and Dirichlet's theorem about the infinitude of primes in an arithmetical progression $a n+b$, when a and b are relatively prime, is expressed by

$$
\forall u \forall v \text { coprime }(u, v) \Longrightarrow \forall x \exists y[x<y \wedge \operatorname{prime}(u y+v)] .
$$

And one can express Goldbach's Twin Prime conjecture by

$$
\forall x \exists y x<y \wedge \operatorname{prime}(y) \wedge \operatorname{prime}(y+\overline{2})
$$

Many of the results and problems in number theory deal with the exponential function x^{y}. If we had given ourselves this function as a fundamental operation of $\boldsymbol{\omega}$ then we could easily express Fermat's Last Theorem by

$$
\forall x \forall y \forall z \forall w\left[x^{w}+y^{w} \approx z^{w} \quad \Longrightarrow \quad w<\overline{3} \vee x y \approx 0\right]
$$

However we do not have this simple situation. Nonetheless we are able to work with a wide class of functions in first-order number theory by defining their graphs.

DEFINITION 3 A function $f: \omega^{n} \Longrightarrow \omega$ is definable in first-order arithmetic if there is a formula $\varphi\left(x_{1}, \ldots, x_{n}, y\right)$ such that $f(\vec{k})=m$ iff $\varphi^{\boldsymbol{\omega}}\left(\bar{k}_{1}, \ldots, \bar{k}_{n}, \bar{m}\right)$ holds in $\boldsymbol{\omega}$.

Now, if we could define the exponential function, say by $\varphi_{\uparrow}(x, y, z)$, then we could express Fermat's Last Theorem by
$\forall x \forall y \forall z \forall w \forall u \forall v \varphi_{\uparrow}(x, w, u) \wedge \varphi_{\uparrow}(y, w, v) \wedge \varphi_{\uparrow}(z, w, u+v) \Longrightarrow w<\overline{3} \vee x y \approx 0$.
So let us find a way to define exponentiation. The obvious approach is to use recursion (as Dedekind did): $a^{0}=1$ and $a^{n+1}=a^{n} a$. To compute a^{n}
directly from such a definition we would compute the sequence $a^{0}, a^{1}, \ldots, a^{n}$. However this does not appear to be expressible in first-order form.

For the moment suppose there is a definable function $s: \omega^{2} \Longrightarrow \omega$, defined by $\varphi_{s}(x, y, z)$, such that for each finite sequence a_{0}, \ldots, a_{n} there is a b such that $s(b, 0)=a_{0}, \ldots, s(b, n)=a_{n}$. Then we could use φ_{s} to define exponentiation in first-order arithmetic using the following formula $\varphi_{\uparrow}(x, y, z)$:
$\exists u\left[\varphi_{s}(u, \overline{0}, \overline{1}) \wedge \forall v \forall w\left(v<y \wedge \varphi_{s}(u, v, w) \Longrightarrow \varphi_{s}(u, v+\overline{1}, w x)\right) \wedge \varphi_{s}(u, y, z)\right]$.
A beautiful observation of Gödel in his 1931 paper was the fact that one could find such a formula - however it was simpler to define a certain function of three variables, called Gödel's beta function, given by

$$
\beta(x, y, z)=\operatorname{rem}(1+(z+1) y, x)
$$

where $\operatorname{rem}(x, y)$ is the remainder after dividing y by x. Clearly β is defined by the following formula $\varphi_{\beta}(x, y, z, w)$:

$$
\exists w[w \equiv x \bmod 1+(z+1) y \wedge w<1+(z+1) y]
$$

The following lemma says that for any finite sequence a_{0}, \ldots, a_{n} from ω there are numbers b and c from ω such that a_{i} is the result of reducing b modulo $1+(i+1) c$.

LEMMA 4 Given any finite sequence $a_{0}, \ldots, a_{n} \in \omega$ there are $b, c \in \omega$ such that $\beta(b, c, i)=a_{i}$ for $0 \leq i \leq n$.

Proof. Let $c=\max \left(n, a_{0}, \ldots, a_{n}\right)$! and let $u_{i}=1+(i+1) c$ for $0 \leq i \leq n$. Then for p a prime we have $p \mid u_{i} \Longrightarrow p \not \subset c$, and thus for $0 \leq i<j \leq n$ we have

$$
\begin{aligned}
p\left|u_{i} \& p\right| u_{j} & \Longrightarrow p \mid u_{i}-u_{j} \\
& \Longrightarrow p \mid(i-j) c \\
& \Longrightarrow p \mid i-j
\end{aligned}
$$

But $i-j \mid c$, so $p \mid c$, which is impossible. Thus the u_{i} are pairwise coprime. Consequently by the Chinese remainder theorem one can find an integer $b\left(<u_{0} \cdots u_{n}\right)$ such that $b \equiv a_{i} \bmod u_{i}$; and since $a_{i}<u_{i}$ we have $\operatorname{rem}\left(u_{i}, b\right)=a_{i}$.

So now a slight modification of our attempt ($\operatorname{using} \varphi_{s}$) at defining exponentiation succeeds, and we can write a a simple sentence $\varphi_{F L T}$ which holds in $\boldsymbol{\omega}$ iff Fermat's Last Theorem is true.

Exercises Let DEF be the class of functions definable on $\boldsymbol{\omega}$ (we include the constants as nullary functions).

Problem 1 Show that DEF is closed under composition, i.e., if $f: \omega^{n} \Longrightarrow \omega$ and $g_{i}: \omega^{k} \Longrightarrow \omega$ are in DEF, $1 \leq i \leq n$, then $f\left(g_{1}, \ldots, g_{n}\right): \omega^{k} \Longrightarrow \omega$ is in DEF.

Problem 2 Show that DEF is closed under primitive recursion, i.e., suppose $n>0$ and $g: \omega^{n-1} \Longrightarrow \omega$ and $h: \omega^{n+1} \Longrightarrow \omega$ are in DEF. Then $f: \omega^{n} \Longrightarrow \omega$ given by

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n-1}, 0\right) & =g\left(x_{1}, \ldots, x_{n-1}\right) \\
f\left(x_{1}, \ldots, x_{n-1}, x_{n}+1\right) & =h\left(x_{1}, \ldots, x_{n}, f\left(x_{1}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

is also in DEF^{1}.

1.2 Peano Arithmetic

Based on the work of Dedekind and Peano one can give a relatively simple set of first-order axioms, called PA, for the natural numbers ${ }^{2}$ from which one can prove all standard theorems of number theory which can be formulated as first-order statements.

[^0]
Peano Arithmetic

- The language is $\{+, \times, 0,1\}$
- The AXIOMS are

$$
\begin{array}{ll}
\forall x & x+1 \not \approx 0 \\
\forall x \forall y & x+1 \approx y+1 \Longrightarrow x \approx y \\
\forall x & x+0 \approx x \\
\forall x \forall y & x+(y+1) \approx(x+y)+1 \\
\forall x & x \times 0 \approx 0 \\
\forall x \forall y & x \times(y+1) \approx(x \times y)+x \\
& \\
& \quad \begin{array}{l}
\text { and for each first-order formula } \varphi(x, \vec{y}) \\
\quad \\
\quad \text { the first-order induction axiom }
\end{array} \\
\forall \vec{y}([\varphi(0, \vec{y}) \wedge \forall z(\varphi(z, \vec{y}) \Longrightarrow \varphi(z+1, \vec{y})] \Longrightarrow \forall x \varphi(x, \vec{y}))
\end{array}
$$

The standard model of PA is $(\omega,+, \times, 0,1)$, where the operations are the usual ones. In Example V.14.3 of LMCS we saw that there are other countable models of PA. And once we have developed a derivation calculus then it is possible to return to the sentences φ in $\S 1$ which expressed important assertions and try to prove them by seeing if we can show $\mathrm{PA} \vdash \varphi$. This method cannot work all the time by Gödel's incompleteness theorem - and indeed we do not know if PA is strong enough to prove any interesting open problems in number theory.

[^0]: ${ }^{1}$ Note that we obtain exponentiation by using $g=1$ and $h\left(x_{1}, x_{2}\right)=x_{1} \cdot x_{2}$.
 ${ }^{2}$ Although Dedekind, Peano, and Landau were interested in axiomatizing positive integers (natural numbers), the standard now is to work with the nonnegative integers.

