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1 Arithmetic I

1.1 First-order Arithmetic

Let ω be the structure (ω,+,×, 0, 1), where ω is the set of non-negative
integers. First-order Arithmetic is Th(ω), the set of first-order statements
in the language {+,×, 0, 1} which are true in ω. Much of the fascination
of working with first-order number theory comes from the simple fact that
there are so many assertions P, including unsolved problems, in number
theory for which one can routinely exhibit a specific first-order ϕ such that
the assertion P is true iff ω |= ϕ. We say that such assertions can be
expressed in first-order arithmetic.

This contrasts sharply with Presburger Arithmetic, i.e., the first-order
theory of (Z,+, 0, 1, <), or the first-order theory for the calculus of classes,
i.e., the first-order theory of all structures (P (U),∪,∩,′ , 0, 1). For these two
examples there are no known unsettled assertions in mathematics for which
one can find such a corresponding first-order ϕ.

In this section we look at the basic ideas for translating number-theoretic
assertions into first-order arithmetic. The starting point is to express some
well known relations by first-order formulas.

DEFINITION 1 For n ∈ ω we define the term n̄ by: 0̄ = 0, n+ 1 = n̄+1.

n̄ is an obvious choice for a term to represent the number n.

DEFINITION 2 A relation r ⊆ ωn is definable on ω if there is a formula
ϕ(x1, . . . , xn) such that r = ϕω , i.e.,

(k1, . . . , kn) ∈ r iff ω |= ϕ(k̄1, . . . , k̄n).

Now we look at a few definable relations:

1



Relation Defining Formula

x ≤ y ∃z (x+ z ≈ y)
x < y x 6≈ y ∧ x ≤ y

x|y ∃z (xz ≈ y)
x ≡ y mod z ∃u [(u+ x ≈ y ∨ y + u ≈ x) ∧ z|u]

prime(x) (x 6≈ 1) ∧ ∀y (y|x =⇒ y ≈ 1 ∨ y ≈ x)
coprime(x, y) ∀u (u|x ∧ u|y =⇒ u ≈ 1)

With just these formulas we can express important results, for Euclid’s the-
orem on the infinitude of primes is given by

∀x∃y x < y ∧ prime (y);

and Dirichlet’s theorem about the infinitude of primes in an arithmetical
progression an+ b, when a and b are relatively prime, is expressed by

∀u∀v coprime(u, v) =⇒ ∀x∃y [x < y ∧ prime (uy + v)].

And one can express Goldbach’s Twin Prime conjecture by

∀x∃y x < y ∧ prime(y) ∧ prime(y + 2̄).

Many of the results and problems in number theory deal with the expo-
nential function xy. If we had given ourselves this function as a fundamental
operation of ω then we could easily express Fermat’s Last Theorem by

∀x∀y∀z∀w [xw + yw ≈ zw =⇒ w < 3̄ ∨ xy ≈ 0].

However we do not have this simple situation. Nonetheless we are able to
work with a wide class of functions in first-order number theory by defining
their graphs.

DEFINITION 3 A function f : ωn =⇒ ω is definable in first-order
arithmetic if there is a formula ϕ(x1, . . . , xn, y) such that f(~k) = m iff
ϕω(k̄1, . . . , k̄n, m̄) holds in ω.

Now, if we could define the exponential function, say by ϕ↑(x, y, z), then
we could express Fermat’s Last Theorem by

∀x∀y∀z∀w∀u∀v ϕ↑(x,w, u) ∧ ϕ↑(y, w, v) ∧ ϕ↑(z, w, u+ v) =⇒ w < 3̄ ∨ xy ≈ 0.

So let us find a way to define exponentiation. The obvious approach is
to use recursion (as Dedekind did): a0 = 1 and an+1 = ana. To compute an
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directly from such a definition we would compute the sequence a0, a1, . . . , an.
However this does not appear to be expressible in first-order form.

For the moment suppose there is a definable function s : ω2 =⇒ ω,
defined by ϕs(x, y, z), such that for each finite sequence a0, . . . , an there
is a b such that s(b, 0) = a0, . . . , s(b, n) = an. Then we could use ϕs to
define exponentiation in first-order arithmetic using the following formula
ϕ↑(x, y, z):

∃u [ϕs(u, 0̄, 1̄) ∧ ∀v∀w (v < y ∧ ϕs(u, v, w) =⇒ ϕs(u, v + 1̄, wx)) ∧ ϕs(u, y, z)] .

A beautiful observation of Gödel in his 1931 paper was the fact that
one could find such a formula — however it was simpler to define a certain
function of three variables, called Gödel’s beta function, given by

β(x, y, z) = rem (1 + (z + 1)y, x),

where rem (x, y) is the remainder after dividing y by x. Clearly β is defined
by the following formula ϕβ(x, y, z, w):

∃w [w ≡ x mod 1 + (z + 1)y ∧ w < 1 + (z + 1)y].

The following lemma says that for any finite sequence a0, . . . , an from ω

there are numbers b and c from ω such that ai is the result of reducing b

modulo 1 + (i+ 1)c.

LEMMA 4 Given any finite sequence a0, . . . , an ∈ ω there are b, c ∈ ω such

that β(b, c, i) = ai for 0 ≤ i ≤ n.

Proof. Let c = max(n, a0, . . . , an)! and let ui = 1 + (i+ 1)c for 0 ≤ i ≤ n.
Then for p a prime we have p|ui =⇒ p 6 |c, and thus for 0 ≤ i < j ≤ n we
have

p|ui & p|uj =⇒ p|ui − uj

=⇒ p|(i− j)c

=⇒ p|i− j.

But i − j|c, so p|c, which is impossible. Thus the ui are pairwise co-
prime. Consequently by the Chinese remainder theorem one can find an
integer b (< u0 · · ·un) such that b ≡ ai mod ui; and since ai < ui we have
rem (ui, b) = ai.
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So now a slight modification of our attempt (using ϕs) at defining expo-
nentiation succeeds, and we can write a a simple sentence ϕFLT which holds
in ω iff Fermat’s Last Theorem is true.

Exercises Let DEF be the class of functions definable on ω (we include the con-
stants as nullary functions).

Problem 1 Show that DEF is closed under composition, i.e., if f : ωn =⇒ ω and
gi : ωk =⇒ ω are in DEF, 1 ≤ i ≤ n, then f(g1, . . . , gn) : ωk =⇒ ω is in DEF.

Problem 2 Show that DEF is closed under primitive recursion, i.e., suppose n > 0
and g : ωn−1 =⇒ ω and h : ωn+1 =⇒ ω are in DEF. Then f : ωn =⇒ ω given
by

f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1)

f(x1, . . . , xn−1, xn + 1) = h(x1, . . . , xn, f(x1, . . . , xn))

is also in DEF1.

1.2 Peano Arithmetic

Based on the work of Dedekind and Peano one can give a relatively simple
set of first-order axioms, called PA, for the natural numbers2 from which one
can prove all standard theorems of number theory which can be formulated
as first-order statements.

1Note that we obtain exponentiation by using g = 1 and h(x1, x2) = x1 · x2.
2Although Dedekind, Peano, and Landau were interested in axiomatizing positive in-

tegers (natural numbers), the standard now is to work with the nonnegative integers.
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Peano Arithmetic

• The language is {+,×, 0, 1}

• The AXIOMS are

∀x x+ 1 6≈ 0
∀x∀y x+ 1 ≈ y + 1 =⇒ x ≈ y

∀x x+ 0 ≈ x

∀x∀y x+ (y + 1) ≈ (x+ y) + 1
∀x x× 0 ≈ 0
∀x∀y x× (y + 1) ≈ (x× y) + x

and for each first-order formula ϕ(x, ~y)
the first-order induction axiom

∀~y ([ϕ(0, ~y) ∧ ∀z(ϕ(z, ~y) =⇒ ϕ(z + 1, ~y)] =⇒ ∀xϕ(x, ~y))

The standard model of PA is (ω,+,×, 0, 1), where the operations are the
usual ones. In Example V.14.3 of LMCS we saw that there are other count-
able models of PA. And once we have developed a derivation calculus then
it is possible to return to the sentences ϕ in §1 which expressed important
assertions and try to prove them by seeing if we can show PA ` ϕ. This
method cannot work all the time by Gödel’s incompleteness theorem – and
indeed we do not know if PA is strong enough to prove any interesting open
problems in number theory.
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