Notes prepared by Stanley Burris March 13, 2001

1 Arithmetic I

1.1 First-order Arithmetic

Let $\boldsymbol{\omega}$ be the structure $(\boldsymbol{\omega}, +, \times, 0, 1)$, where $\boldsymbol{\omega}$ is the set of non-negative integers. First-order Arithmetic is Th $(\boldsymbol{\omega})$, the set of first-order statements in the language $\{+, \times, 0, 1\}$ which are true in $\boldsymbol{\omega}$. Much of the fascination of working with first-order number theory comes from the simple fact that there are so many assertions P, including unsolved problems, in number theory for which one can routinely exhibit a specific first-order φ such that the assertion P is true iff $\boldsymbol{\omega} \models \varphi$. We say that such assertions can be *expressed* in first-order arithmetic.

This contrasts sharply with Presburger Arithmetic, i.e., the first-order theory of (Z, +, 0, 1, <), or the first-order theory for the calculus of classes, i.e., the first-order theory of all structures $(P(U), \cup, \cap, ', 0, 1)$. For these two examples there are *no* known unsettled assertions in mathematics for which one can find such a corresponding first-order φ .

In this section we look at the basic ideas for translating number-theoretic assertions into first-order arithmetic. The starting point is to express some well known relations by first-order formulas.

DEFINITION 1 For $n \in \omega$ we define the term \bar{n} by: $\bar{0} = 0$, $\overline{n+1} = \bar{n}+1$.

 \bar{n} is an obvious choice for a term to represent the number n.

DEFINITION 2 A relation $r \subseteq \omega^n$ is *definable* on $\boldsymbol{\omega}$ if there is a formula $\varphi(x_1, \ldots, x_n)$ such that $r = \varphi^{\boldsymbol{\omega}}$, i.e.,

 $(k_1,\ldots,k_n) \in r$ iff $\boldsymbol{\omega} \models \varphi(\bar{k}_1,\ldots,\bar{k}_n).$

Now we look at a few definable relations:

Relation	Defining Formula
	$\exists z (x + z \approx y)$
x < y	$x \not\approx y \ \land x \leq y$
x y	$\exists z (xz \approx y)$
	$\exists u \left[(u + x \approx y \lor y + u \approx x) \land z u \right]$
$\operatorname{prime}(x)$	$(x \not\approx 1) \land \forall y (y x \implies y \approx 1 \lor y \approx x)$
$\operatorname{coprime}(x, y)$	$\forall u \left(u x \wedge u y \implies u \approx 1 \right)$

With just these formulas we can express important results, for Euclid's theorem on the infinitude of primes is given by

$$\forall x \exists y \ x < y \land \operatorname{prime}(y);$$

and Dirichlet's theorem about the infinitude of primes in an arithmetical progression an + b, when a and b are relatively prime, is expressed by

$$\forall u \forall v \text{ coprime}(u, v) \implies \forall x \exists y [x < y \land \text{prime}(uy + v)]$$

And one can express Goldbach's Twin Prime conjecture by

 $\forall x \exists y \ x < y \land \operatorname{prime}(y) \land \operatorname{prime}(y + \overline{2}).$

Many of the results and problems in number theory deal with the *exponential function* x^y . If we had given ourselves this function as a fundamental operation of $\boldsymbol{\omega}$ then we could easily express Fermat's Last Theorem by

$$\forall x \forall y \forall z \forall w \left[x^w + y^w \approx z^w \quad \Longrightarrow \quad w < \bar{3} \lor xy \approx 0 \right].$$

However we do not have this simple situation. Nonetheless we are able to work with a wide class of functions in first-order number theory by defining their graphs.

DEFINITION 3 A function $f : \omega^n \implies \omega$ is definable in first-order arithmetic if there is a formula $\varphi(x_1, \ldots, x_n, y)$ such that $f(\vec{k}) = m$ iff $\varphi^{\boldsymbol{\omega}}(\bar{k}_1, \ldots, \bar{k}_n, \bar{m})$ holds in $\boldsymbol{\omega}$.

Now, if we could define the exponential function, say by $\varphi_{\uparrow}(x, y, z)$, then we could express Fermat's Last Theorem by

$$\forall x \forall y \forall z \forall w \forall u \forall v \, \varphi_{\uparrow}(x, w, u) \land \varphi_{\uparrow}(y, w, v) \land \varphi_{\uparrow}(z, w, u + v) \implies w < 3 \lor xy \approx 0.$$

So let us find a way to define exponentiation. The obvious approach is to use recursion (as Dedekind did): $a^0 = 1$ and $a^{n+1} = a^n a$. To compute a^n

directly from such a definition we would compute the sequence a^0, a^1, \ldots, a^n . However this does not appear to be expressible in first-order form.

For the moment suppose there is a definable function $s: \omega^2 \implies \omega$, defined by $\varphi_s(x, y, z)$, such that for each finite sequence a_0, \ldots, a_n there is a *b* such that $s(b, 0) = a_0, \ldots, s(b, n) = a_n$. Then we could use φ_s to define exponentiation in first-order arithmetic using the following formula $\varphi_{\uparrow}(x, y, z)$:

$$\exists u \; [\varphi_s(u,\bar{0},\bar{1}) \land \forall v \forall w \, (v < y \land \varphi_s(u,v,w) \implies \varphi_s(u,v+\bar{1},wx)) \land \varphi_s(u,y,z)]$$

A beautiful observation of Gödel in his 1931 paper was the fact that one could find such a formula — however it was simpler to define a certain function of three variables, called Gödel's beta function, given by

$$\beta(x, y, z) = rem (1 + (z + 1)y, x),$$

where rem(x, y) is the remainder after dividing y by x. Clearly β is defined by the following formula $\varphi_{\beta}(x, y, z, w)$:

$$\exists w \ [w \equiv x \bmod 1 + (z+1)y \land w < 1 + (z+1)y].$$

The following lemma says that for any finite sequence a_0, \ldots, a_n from ω there are numbers b and c from ω such that a_i is the result of reducing b modulo 1 + (i+1)c.

LEMMA 4 Given any finite sequence $a_0, \ldots, a_n \in \omega$ there are $b, c \in \omega$ such that $\beta(b, c, i) = a_i$ for $0 \le i \le n$.

PROOF. Let $c = \max(n, a_0, \ldots, a_n)!$ and let $u_i = 1 + (i+1)c$ for $0 \le i \le n$. Then for p a prime we have $p|u_i \Longrightarrow p \not | c$, and thus for $0 \le i < j \le n$ we have

$$p|u_i \& p|u_j \implies p|u_i - u_j$$
$$\implies p|(i - j)c$$
$$\implies p|i - j.$$

But i - j|c, so p|c, which is impossible. Thus the u_i are pairwise coprime. Consequently by the Chinese remainder theorem one can find an integer $b \ (< u_0 \cdots u_n)$ such that $b \equiv a_i \mod u_i$; and since $a_i < u_i$ we have $rem \ (u_i, b) = a_i$. So now a slight modification of our attempt (using φ_s) at defining exponentiation succeeds, and we can write a simple sentence φ_{FLT} which holds in $\boldsymbol{\omega}$ iff Fermat's Last Theorem is true.

EXERCISES Let DEF be the class of functions definable on ω (we include the constants as nullary functions).

Problem 1 Show that DEF is closed under *composition*, i.e., if $f : \omega^n \implies \omega$ and $g_i : \omega^k \implies \omega$ are in DEF, $1 \le i \le n$, then $f(g_1, \ldots, g_n) : \omega^k \implies \omega$ is in DEF.

Problem 2 Show that DEF is closed under *primitive recursion*, i.e., suppose n > 0 and $g: \omega^{n-1} \implies \omega$ and $h: \omega^{n+1} \implies \omega$ are in DEF. Then $f: \omega^n \implies \omega$ given by

$$f(x_1, \dots, x_{n-1}, 0) = g(x_1, \dots, x_{n-1})$$

$$f(x_1, \dots, x_{n-1}, x_n + 1) = h(x_1, \dots, x_n, f(x_1, \dots, x_n))$$

is also in DEF^1 .

1.2 Peano Arithmetic

Based on the work of Dedekind and Peano one can give a relatively simple set of first-order axioms, called PA, for the natural numbers² from which one can prove all standard theorems of number theory which can be formulated as first-order statements.

¹Note that we obtain exponentiation by using g = 1 and $h(x_1, x_2) = x_1 \cdot x_2$.

 $^{^{2}}$ Although Dedekind, Peano, and Landau were interested in axiomatizing *positive* integers (natural numbers), the standard now is to work with the *nonnegative* integers.

PEANO ARITHMETIC

- The language is $\{+, \times, 0, 1\}$
- The AXIOMS are

 $\begin{array}{ll} \forall x & x+1 \not\approx 0 \\ \forall x \forall y & x+1 \approx y+1 \implies x \approx y \\ \forall x & x+0 \approx x \\ \forall x \forall y & x+(y+1) \approx (x+y)+1 \\ \forall x & x \times 0 \approx 0 \\ \forall x \forall y & x \times (y+1) \approx (x \times y) + x \\ & \text{ and for each first-order formula } \varphi(x, \vec{y}) \\ & \text{ the first-order induction axiom} \\ \forall \vec{y} \left([\varphi(0, \vec{y}) \land \forall z (\varphi(z, \vec{y}) \implies \varphi(z+1, \vec{y})] \implies \forall x \varphi(x, \vec{y}) \right) \end{array}$

The standard model of PA is $(\omega, +, \times, 0, 1)$, where the operations are the usual ones. In Example V.14.3 of **LMCS** we saw that there are *other* countable models of PA. And once we have developed a derivation calculus then it is possible to return to the sentences φ in §1 which expressed important assertions and *try* to prove them by seeing if we can show PA $\vdash \varphi$. This method cannot work all the time by Gödel's incompleteness theorem – and indeed we do not know if PA is strong enough to prove any interesting open problems in number theory.