A proof of Boole's Expansion Theorem

[THEOREM I.4.3 OF LMCS]

Given classes $\vec{A} = A_1, \ldots, A_m$ we say K is an \vec{A} -constituent if it is a constituent for the classes A_1, \ldots, A_m . Boole used the following theorem to expand a given expression $F(A_1, \ldots, A_m)$ into its constituents. It says basically that F is a union of \vec{A} -constituents, and a given \vec{A} -constituent K is a constituent of this expansion of F if and only if $F(\sigma_K) \approx 1$, where σ_K is the unique sequence σ of 1's and 0's that make $K(\sigma) \approx 1$. The following gives the σ_K for the constituents belonging to the three classes A, B, C:

K	σ_K
ABC	111
ABC'	110
AB'C	101
AB'C'	100
A'BC	011
A'BC'	010
A'B'C	001
A'B'C'	000

EXAMPLE 1 If $F(A, B, C) = (AB \cup C)'$ and K = A'BC' then $F(\sigma_K) = F(0, 1, 0) = (01 \cup 0)' = 1$; and note that A'BC' is one of the constituents in the expansion of $(AB \cup C)'$.

Note that if K, L are both \vec{A} constituents then

$$K(\sigma_L) = \left\{ egin{array}{ll} 1 & ext{if } K = L \ 0 & ext{otherwise} \end{array}
ight. .$$

THEOREM [Expansion Theorem] Let $F(X_1, ..., X_n)$ be given. Then

$$F(X_1, ..., X_n) \approx F(1, 1..., 1) X_1 X_2 \cdots X_n \\ \cup F(0, 1, ..., 1) X_1' X_2 \cdots X_n \cup F(1, 0, ..., 1) X_1 X_2' \cdots X_n \\ \cup \cdots \cup F(0, ..., 0, 0) X_1' X_2' \cdots X_n',$$

or, more briefly,

$$F(X_1,\ldots,X_n) pprox \bigcup_K F(\sigma_K)K,$$

where K ranges over the \vec{X} -constituents.

Proof By using the fundamental identities on page 11 one sees that it is possible to express F as a union of constituents. So we write

$$F(X_1,\ldots,X_n) \approx a_1 X_1 X_2 \cdots X_n \cup a_2 X_1' X_2 \cdots X_n \cup a_3 X_1 X_2' \cdots X_n \cup a_4 X_1' X_2' \cdots X_n \cup \cdots,$$

where each constant a_i is either 0 or 1. We can write this more briefly as follows (using the fact that there are 2^n constituents for n variables)

$$F(ec{X})pproxigcup_{j=1}^{2^n}a_jK_j,$$

where the K_j are the various \vec{X} -constituents.

Now one observes that for σ_i being the unique sequence of 1's and 0's that gives $K_i(\sigma_i) \approx 1$, i.e., $\sigma_i = \sigma_{K_i}$, we have

$$F(\sigma_i) \;\; pprox \;\; igcup_{j=1}^{2^n} a_j K_j(\sigma_i) pprox a_i,$$

as desired. ■