Notes prepared by Stanley Burris February 10, 1997

## A proof of Boole's Elimination Theorem

## THEOREM I.4.7 OF LMCS

This theorem is stated on page 24 of **LMCS**. Boole's proofs, as explained in the historical remarks, were pretty 'wild'. Here is a modern version.

**THEOREM** [Elimination Theorem] The most general equation  $F(\vec{B}) \approx 0$  that follows from  $E(\vec{A}, \vec{B}) \approx 0$  is obtained by setting

$$F(\vec{B}) = E(1, 1, \dots, 1, \vec{B})E(0, 1, \dots, 1, \vec{B}) \dots E(0, 0, \dots, 0, \vec{B}),$$

or, more briefly,

$$F(\vec{B}) = \bigcap_{\sigma} E(\sigma, \vec{B}),$$

where  $\sigma$  ranges over sequences of 1's and 0's.

**Proof.** First we show  $F(\vec{B}) \approx 0$ , for the stated choice of F. By expanding E about  $A_1$  (see Problem 4.4 on page 25) we have

$$E(ec{A},ec{B}) \,pprox \, E(1,\widehat{A},ec{B})A_1 \cup E(0,\widehat{A},ec{B})A_1',$$

where  $\widehat{A} = A_2 \cdots A_m$ . Then from  $E(\vec{A}, \vec{B}) \approx 0$  follows

$$E(1, \widehat{A}, \vec{B})A_1 \approx 0$$
  
 $E(0, \widehat{A}, \vec{B})A'_1 \approx 0$ 

and thus

$$E(1, \widehat{A}, \overrightarrow{B})E(0, \widehat{A}, \overrightarrow{B})A_1 \approx 0$$
  
$$E(1, \widehat{A}, \overrightarrow{B})E(0, \widehat{A}, \overrightarrow{B})A_1' \approx 0.$$

Taking the union of these two gives

$$E(1,\widehat{A},\overrightarrow{B})E(0,\widehat{A},\overrightarrow{B})(A_1\cup A_1') \approx 0,$$

and thus

$$E(1,\widehat{A},\vec{B})E(0,\widehat{A},\vec{B}) \quad pprox \quad 0.$$

Now repeat the above steps, except this time expand about  $A_2$ , using the last equation which has the form  $E'(\hat{A}, \vec{B}) \approx 0$ , to obtain

$$(E(1,1,\widetilde{A},\vec{B})E(0,1,\widetilde{A},\vec{B}))(E(1,0,\widetilde{A},\vec{B})E(0,0,\widetilde{A},\vec{B})) \approx 0,$$

where  $\tilde{A} = A_3, \dots, A_m$ . Continuing one arrives at the desired conclusion that  $F(\vec{B})$ , as defined above, is 0.

For the converse suppose  $H(\vec{B}) \approx 0$  follows from  $E(\vec{A}, \vec{B}) \approx 0$ . Let  $K(\vec{B})$  be any  $\vec{B}$ -constituent of H. Then for any  $\vec{A}$ -constituent  $L(\vec{A})$  we have  $L(\vec{A})K(\vec{B})$  is an  $\vec{A}, \vec{B}$ -constituent of H. But then, by Theorem 4.5, LK must be an  $\vec{A}, \vec{B}$ -constituent of E as  $H \approx 0$  follows from  $E \approx 0$ . Then  $E(\sigma_L, \vec{B})$  has K as a  $\vec{B}$ -constituent, i.e.,  $E(\sigma_L, \vec{B}) \approx K \cup \cdots$ . So K is a  $\vec{B}$ -constituent of E as E is defined to be the intersection over the  $E(\vec{B})$  of the  $E(\sigma_L, \vec{B})$ 's.

So every  $\vec{B}$ -constituent of H is also a  $\vec{B}$ -constituent of F. This means, by Theorem 4.5, that  $H\approx 0$  follows from  $F\approx 0$ , so  $F\approx 0$  is a more general conclusion than  $H\approx 0$ .