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1 E-unification

Just as unification plays a crucial role in the study of term rewrite systems
(see Chapter III of LMCS), one has E-unification for work with ETRS’s.
Indeed the equational theorem prover EQP that William McCune used to
verify the Robbins’ Conjecture (discussed at the end of Chapter IIT of LMCS)
uses AC-unification.

In the following E will denote a set of equations.

DEFINITION 1 Given a pair of terms s,t € T,, we say that a substitution
o: T, = T, is an E-unifier of s,t € T,, if o(s) and o(¢) are equal mod
E,ie.,

E=o(s)=o(t).
DEFINITION 2 The set of E-unifiers of s and ¢ is denoted by Ug(s, t).

DEFINITION 3 Given two substitutions 0,0’ : T,, = T, we say o
is more general (mod E) than o', written o <p o', if there is a substitution
T : T, =— T, such that

Etro'(x;) ~Too(x;) for 1 <i<n.
LEMMA 4 <gis a preorder on {¢ : T,, = T,}.

PRrROOF. (Exercise.) m

DEFINITION 5 Two substitutions o, ¢’ mapping T, to T, are E-equivalent,

written o ~g o', if 0 <g ¢’ and ¢/ <g 0.
DEFINITION 6 p is a most general E-unifier of s and ¢ if
(a) 1 € Up(s,1), and

(b) 0 € Ug(s,t) and 0 <g p implies 0 ~g p.



One can no longer assume that an E-unifiable pair has a most general
FE-unifier — this depends on the choice of E. The following situations are
encountered:

1.

There is an FE-unifier i of s and ¢ which is more general than any
FE-unifier of s and t.

There are finitely many most general F-unifiers u, ... ,pu, of s and ¢
such that for any unifier o of F some p; is more general than o.

There are infinitely many most general E-unifiers p;(i € I) of s and ¢
such that for any o € Ug(s,t) some p; is more general than o.

. There is a 0 € Ug(s,t) such that no most general unifier of s and ¢ is

more general than o.

This leads to the following unification types:

if Ug(s, t) satisfies | then s, is (mod E)

(1) unitary
(2), not (1) finitary
(3), not (2) infinitary
(4) nullary

Using this we can give the unification types for sets of equations F:

i.

ii.

iii.

iv.

FE is unitary if every F-unifiable s,¢ is unitary

FE is finitary if every E-unifiable s,t is unitary or finitary, and some
E-unifiable s,t is finitary.

FE is infinitary if every E-unifiable s,t is unitary or finitary or infini-
tary, and some E-unifiable s, is infinitary.

FE is nullary if some E-unifiable s,t is nullary.

Rather than working with terms modulo F one can phrase the unification

types in terms of the homomorphisms between the free algebras in the variety
V defined by E.

DEFINITION 7 Given a set of equations E let F,, be the E-free alge-
bra freely generated by z1,--- ,z,, and let F, be the E-free algebra freely
generated by countably many generators.



Given a term s in T,, we will adopt the popular convention of using the
same symbol s to denote the corresponding element of F,, (which is actually
a coset of terms).

DEFINITION 8 For s,t € F,, define the set of E-unifiers of s,t by
Ug(s,t) = {oc € Hom(F,,,F,)) : o(s) = o(t)}.
We say the pair s,t is E-unifiable if Ug(s,t) # O.

The problem of determining if Ug(s,t) is the empty set, for arbitrary
terms s, t, is called the unification problem for E.

DEFINITION 9 Define a relation <g (called more general than) on Ug(S)
by o <p o’ iff there is a 7 € Hom(F,, F,,) such that ¢/ = 7o 0.

This is expressed by the following diagram:

o’ is more general than o

LEMMA 10 <g is a preorder on {0 : T,, = T}

PRrROOF. (Exercise.) m

DEFINITION 11 Two mappings 0,0’ € Hom(F,,F,) are equivalent,
written o ~g o/, if each is <g to the other.

DEFINITION 12 Minimal elements (up to equivalence) of Ug(s,t) are
called most general unifiers of s,t.



DEFINITION 13 A set of equations E (or the variety V' determined by
E) is:

unitary if for each F,, and each E-unifiable s,t from F,, there is a p from
Ug(s,t) such that for every o € Ug(s,t) we have u <p o.

finitary if for each F,, and each E-unifiable s, ¢t from F,, there are most gen-
eral unifiers p1, ..., ug from Ug(s,t) such that for every o € Ug(s,t)
we have some p; <p o; and E is not unitary.

infinitary if for each F,, and each E-unifiable s, ¢ from F,, there are most
general unifiers u;(i € I) from Ug(s, t) such that for every o € Ug(s,t)
we have some u; <g o; and F is not unitary or finitary.

nullary if none of the above hold.

The algebraic approach has proved most useful in determining unification
types of some classical theories such as groups — Lawrence pointed out the
importance of the Hopf and Schreier properties to establish nonnullary type,
as we shall see below.

One can also view FE-unification as solving equations in F,. Given an
equation s & ¢, an F-unifier o of s,t gives a solution (o(x1),---,0(zy)) of
this equation in F,. And every solution corresponds to an E-unifier.

Thus we can speak of the E-unification type of a single equation. The
unification type of F is then the “worst” of the possible E-unification types
of equations s ~ t.

One can also generalize this to the F-unification type of a finite system
of equations; and use this to define the unification type of E. This will agree
with the previous type classification, provided the type is either unitary or
finitary. In the examples that follow the results are the same for these two
definitions of the unification type of E.

EXAMPLE 14 [VECTOR SPACES]

Solving a system of homogeneous linear equations over a field K can be
formulated in the context of E-unification. Vector spaces over K can be
regarded as an equational class with the usual vector space operations +, —,
the constant 0, and a collection of unary operations fi, for k € K, to give
the scalar multiplication. We can axiomatize this equational theory by the



following set E:

r+y+z) = (@+y)+z2
r+y = yYy+x
z+0 ~ =z
z+(-z) = 0
felz+y) = fil@)+ fr(y)

feri(x) ~  frl@)+ filz)
fe(filz) = fra(z)
filz) = z

The E-free algebra F,, is the familiar n-dimensional vector space K"
over K, and the substitutions are linear maps.
A particular solution of an m x n system of homogeneous linear equations

n
Zaijszo 1§z§m (1)
j=1

corresponds to a homomorphism
o:Fn) = F(0)

such that each of the left-hand sides of (1) maps to 0. A solution with
parameters corresponds to a homomorphism

o:Fn) = F(w)

such that each of the left-hand sides of (1) maps to 0. and in the context of
solutions with parameters we can view solutions of a system of homogeneous
linear equations as E-unifiers — the unification type is unitary, and Gaus-
sian elimination solves the unification problem and provides a most general
unifier when such exists.

However the above formulation will not suffice to discuss linear equations
in general since the terms in the above language will be homogeneous, i.e.,
of the form Z?:l a;jr;. To remedy this we merely need to add constants k,
for k € K, to our language, and the following axioms to E:

(k) =~ k-k for k' e K
—k1 =~ ko if this holds in K
ki1 + ks =~ ks if this holds in K.

L



In this setting the FE-free algebra F, can be thought of as an n + 1-
dimensional vector-space over K, using the mapping

a1+ aprn, +b = (a1,-+- ,an,b);

However the homomorphisms between the free algebras of the equational
class defined by E will not correspond to linear maps between the corre-
sponding vector spaces.

A particular solution of an m X n system of linear equations

n
Zaijxj—kbizo 1<i<m (2)
j=1

corresponds to a homomorphism
o:Fn) = F(0)

such that each of the left-hand sides of (2) maps to 0; and a solution with
parameters corresponds to a homomorphism

o:Fn) = F(w)

such that each of the left-hand sides of (2) maps to 0. Solutions with param-
eters correspond to E-unifiers — and again the unification type is unitary,
and Gaussian elimination solves the unification problem and provides a most
general unifier when such exists.

EXAMPLE 15 [SEMIGROUPS]

When Plotkin originally proposed that the notion of unification be ex-
tended to E-unification in 1972 he presented the example of the associative
law for a binary operation — this of course defines semigroups.

e Semigroups are infinitary.

PROOF. Let E = {(x-y) -z~ z-(y-2)}. Elements of the free semigroups
can be conveniently thought of as strings on an alphabet, and hence we can
attach a length |s| to such strings s.

For 0 : F(n) = F(w) we associate a tuple of positive integers

#o = (‘0’(1‘1)’, ”U(ZH)D



Now we observe that for any string s from F(n) we have |s| < |o(s)|. Con-
sequently, giving N" the coordinatewise ordering, for o; : F(n) — F(w),
(1 =1,2), we have

o1 <p o2 = #o1 < F#o2.
Thus for any infinite descending sequence
o1 > 09 > - (3)
there must exist an ng such that
1> ng = #0; = #0on,.
Choose 7; such that
0; = T; O Oj41.

Then for ¢ > ng we have 7; mapping the variables of the range of ;11 to
variables (otherwise #0; > #0;41). Such a 7; cannot be one-to-one on the
variables in the range of ¢;,1, for otherwise o; and ;11 would be equivalent
under <p. This leads to the conclusion that the ranges of oy, opo+1," -
have a strictly decreasing (finite) number of variables in them. This is
impossible, and hence so is the existence of an infinite sequence (3).

Thus for semigroups we see that the “more general than” relation on
Hom(F(n),F(w)) has the descending chain property; and thus the unifica-
tion type of semigroups cannot be nullary.!

Now we turn to an example to show that the unification type of semi-
groups is infinitary. Consider the equation z -y =~ y - . Clearly it can be
unified; what is not so obvious is that every unifier ¢ is of the form

o(z) = si' (4)
oly) = ¢ (5)

for some choice of string s and positive integers 7, j. (This is proved below in
Example 16 on groups.) Furthermore, every o of the form (4,5) is a unifier.
We leave it as an exercise to show that the most general unifiers of z-y ~ y-x
are given by (4,5) with s = z, a variable, and ged(i, j) = 1. Consequently
we have an equation whose unification type is indeed infinitary. m

!The failure of the descending chain property does not imply nullary type.



EXAMPLE 16 [GROUPS|

One of the questions posed by Plotkin in 1972 was how to deal with
situations like E being defining equations for groups. In this case there is no
obvious way to assign a “length” to elements of the free algebras with the
property that substitutions are non length decreasing. (Consider the fact
that a simple substitution, of 27! for y, can reduce z - y to e.)

The unification type of groups was not determined until 1989, when
John Lawrence realized how to use some deep facts about the nature of free
groups. His analysis points to the fact that the classification of the type
of groups cannot, in all likelihood, be determined by a “local” analysis of
terms; but rather one needs to know how the terms interact in a global
fashion, i.e., some special properties of the free objects. Recall that the size
of a set of free generators in a free group is an invariant, called the rank of
the free group. (Any variety with a nontrivial finite member has such a rank
function.)

Now we give Lawrence’s analysis of groups.

e Groups have infinitary unification type.

Let F(k) be the free group freely generated by k elements. Two key
properties are needed:

[Schreier | Subgroups of finitely generated free groups are free.

[Hopf | Given a homomorphism o : F(n) = F(k), if ¢ is not one-to-one
then the rank of o(F(n)) is less than n.

Let us first use these properties to show that the unification type of
x -y~ y-x is nullary.

Let 0 : F(2) = F(w) be a unifier of x -y ~ y - x. Then o is
not one-to-one, so the rank of o(F(2)) is either 0 or 1. If it is 0
then we have the trivial unifier which maps x and y to e. If it
is 1 then we have o(z) and o(y) in a cyclic subgroup of F(w),
so there is an element s of F(w), and integers ¢ and j, such that
o(x) = st, o(y) = .

Now we leave it as an exercise to show that the most general
unifiers of x -y = y - x are obtained by letting s be (the coset
of) a variable z, and by choosing 7 and j to be coprime integers.
Thus we have found an equation of infinitary unification type.



Thus the type of groups is either infinitary or nullary. It only remains
to rule out nullary.

REMARK 17 This conclusion applies to semigroups and monoids since
the w-generated free object in each case is a subreduct? of the w-generated
free group (see the exercises).

Now suppose we are given some finite set S of group equations, and
suppose that o € Ug(5) is not a most general unifier of S. Then there is a
0o € Ug(T) such that o9 <g o. In particular we have a7 : F(w) = F(w)
such that o = 7 0 0y.

As 09(F(n)) is a free group of rank n; for some n; < n, and since
F(n1) * F(w) ~ F(w), we have a ¢/ € Ug(S) and a 19 : F(w) = F(w)
such that

e op=T900
e T is one-to-one on the range of ¢’
e the range of ¢’ is the subgroup of F(w) generated by {1, ,zn, }.

As 0/ <g o¢g <g o, we have 0/ <p 0.

Now if ¢’ is not a most general unifier of S, then by repeating this
process one can find ne < ny and o’ € Ug(S) such that ¢’ <p ¢/, and
the range of ¢’ is the subgroup of F(w) generated by {z1, -+ ,x,,}. Let
7 : F(w) = F(w) be such that ¢/ = 7’ 0 ¢”. Then 7’ maps the range
of ¢” onto the range of ¢/, so 7/ cannot be one-to-one on the range of o”
(otherwise we could show ¢’ <p ¢”). By the Hopf property it follows that
ng < Nnj.

Consequently one can only apply the ' operation above finitely many
times before reaching a most general unifier. This proves groups are not
nullary, and finishes the proof that the type of groups is indeed infinitary. m

/

Lawrence continues his work on groups to show that most general unifiers
of a finite set S of group equations in the variables {z1,--- ,x,} are in one-
to-one correspondence with the the minimal normal subgroups N of F(n)
which identify the left and right hand sides of the various equations in .S, and
are such that F(n)/N is free. Then Lawrence applies a classical algorithm
(of Nielsen) to get a set of free generators, and this gives an algorithm for

2A subalgebra of a reduct to the appropriate language.



generating the most general unifiers of S. (We note that the unification
problem for groups is trivial — terms can always be unified.)
An unsolved problem posed by Lawrence is the following.

OPEN PROBLEM
Will the unification type of any finite set of group equations be either uni-
tary or infinitary?

For any variety of Abelian groups the unification type is unitary. Al-
bert and Lawrence have carried out a thorough analysis of nilpotent class ¢
groups, for ¢ > 1. Such classes are always nullary. Furthermore any finite
set of equations is either unitary or nullary, and they have found an algo-
rithm which determines which case holds; and, if the answer is unitary, then
it gives the most general unifier.

EXAMPLE 18 [COMMUTATIVE RINGS]

Commutative rings have been studied by computer scientists (sometimes
described as algebras related to Hilbert’s Tenth Problem). For commutative
rings the free objects are the well-known polynomial rings:

F(n) = Zxy, -,z
F(w) = Z[l‘l,l'Q,--']

A system of commutative ring equations can be thought of as a system of
Diophantine equations, and unification is concerned with finding solutions in
the above polynomial ring Z[x1, x9, - - -]. This is actually present in classical
number theory, for example the most general solutions of the Pythagorean
equation z2 + y? ~ 22 have long been known to be the following eight:

o(z) = fw(u?® -

oly) = Fw(2uv)

o(z) = wu®+?)
and

o(x) = Z£w(2uv)

o(y) = fw?—?)

o(z) = wu?+?).

There is a close tie between solving a set S of commutative ring equations
in the integers Z and solving them in the polynomial ring Z[z;,xo,- -,
namely

10



e S is solvable in Z iff in Z[x1,z9,- - -].

This follows from the fact that Z is both a subring and a homomorphic
image of the polynomial ring. Consequently the unification problem for
commutative rings is precisely the problem of the solvability of Diophantine
systems in the integers, known as Hilbert’s Tenth problem. Matijasevic,
building on the work of Davis, Putnam, and Robinson, proved that there
is no algorithm to determine if a finite system of Diophantine equations
can be solved in the integers. Consequently the unification problem for
commutative rings is undecidable.

We do not know the exact unification of type of commutative rings, but
we have narrowed it down:

e Commutative rings are either infinitary or nullary.

To see this we will show that the Pell equation
22 =32 —1=0 (6)
is infinitary. First we know that (a,b) is a solution in integers iff
la| + V3[b| = (2 + V3)"

for some integer n. Thus there are an infinite number of constant solutions
to (6). We will show that there are no other solutions in Z[z;,z2,- -], and
then it follows that the constant solutions are all most general, so the type
of (6) is indeed infinitary.

If there is a nonconstant solution (si(xy,--- ,xg), s2(x1,--- ,zx)) of (6)
then there is a nonconstant solution (¢1(x),t2(z)) in only one variable. Now
the sequence

t1(n)| + V3|ta(n)|

has polynomially bounded growth, and it is eventually strictly increasing.
But then it must eventually be a subsequence of (2 + v/3)". This is impos-
sible. m

OPEN PROBLEM

Is the unification type of commutative rings infinitary? (IL.e., does every
solution of a finite set of Diophantine equations come from a most general
solution?)

11



EXAMPLE 19 [BOOLEAN ALGEBRAS]

Let E be a set of equational axioms for Boolean algebras. In 1987
Bittner & Simonis proved that the unification type of E is unitary. To
see this let s,t be E-unifiable terms, and let og be a fixed E-unifier of s, t.
Then we claim that the most general E-unifier of s,t is given by

plxi) = (s + )" Awi] V[(s + ) A oo(w:)]

where + is the usual “symmetric difference” of Boolean algebras, since one
has

i. BAEo(s)~o(t), and
ii. for 0 € Ug(s,t) we have 0 = o o p.

EXAMPLE 20 [DISCRIMINATOR VARIETIES]

In 1990 Nipkow published a proof that the variety determined by a pri-
mal algebra has unitary unification type. Such varieties are special cases of
discriminator varieties. For definitions, examples, and a proof that discrim-
inator varieties have unitary unification type, see [7].

A short table of some of the more popular sets of equationally defined
classes follows, with their types (if known):

Equational Class Unification Type Discovered by

semigroups infinitary Plotkin (1972)

commutative semigroups | finitary Livesey & Siekmann (1976); Stickel (1975, 1981)
semilattices finitary Livesey & Siekmann (1976); Blittner (1986)
distributive lattices nullary Willard (1989)

Boolean algebras unitary Biittner & Simonis (1987)

discriminator varieties unitary Burris (1989)

Abelian groups finitary Lankford (1979)

groups infinitary Lawrence (1989)

commutative rings infinitary or nullary | Burris & Lawrence (1989)

rings infinitary Lawrence (1989)

lattices nullary Willard (1991)

Heyting algebras

Other recent results include

e M. Albert and R. Willard have classified (1989) the unification type of
_all equational theories of two-element algebras (making use of Post’s
classification of the clones on 2 elements).

12



e Willard recently proved that the equational theory of a finite algebra
can be of infinitary type.

e If one takes the language {+, x,0, 1}, that is the language of rings
without the operation minus, then one can write down a finite set
of equational axioms E whose consequences are precisely the conse-
quences of commutative ring theory which do not mention minus. Such
a system was studied by Franzen in Hilbert’s tenth problem is of unifi-
cation type zero, J. Automated Reasoning 9 (1992), 169-178, where he
shows the unification type is nullary. In spite of the title of the paper,
his result does not resolve the unification type of commutative rings
— having the minus operation gives a radically different situation.

EXERCISES

Problem 1 Prove <g is a preorder on {0 : F,, = F,}.

Problem 2 [Freese| Let E be of finitary unification type.

(a) Prove that every chain of substitutions from {¢ : F,, = F,} (under <p)
has a lower bound.

(b) Prove that every downward directed set of substitutions from {¢ : F,, =
F.,} (under <g) has a lower bound.

Problem 3 Let E define semigroups. Give an algorithm to determine if o7 <pg 09,
where 01,09 : F,, = F,.

Problem 4 Let E define groups. Let p; ; be the substitution defined by
pij(x) = 2
pigly) = 2.
(a) Prove that, up to equivalence, the most general E-unifiers of z -y ~ y - x are
given by the p; ; with 4,5 € Z and ged(d, j) = 1.
(b) Show that p; j ~p p—;—_j, for i,5 € Z.

(c) Show that the p;; with ged(i,j) = 1 and max(i,j) > 0 gives a complete
list (up to equivalence) of pairwise inequivalent most general E-unifiers of

Problem 5 Let E define semigroups. Prove that the p; ; of Problem 4, where
i,j7 € N, give a complete list (up to equivalence) of pairwise inequivalent most
general F-unifiersof z -y~ y - x.

Problem 6 Let E = {(x-y)- 2~z (y-2),x-e = x,e-2 =~ x}; so E defines

monoids. Prove that the unification type of E is infinitary.

13



Problem 7 Verify that Boolean algebras have unitary unification type. [Hint:
check the claims at the end of Example 19.]

Problem 8 x Show semilattices (i.e., idempotent commutative semigroups) have
finitary unification type.

[Hint: the elements of the free semilattices can be thought of as nonempty sets of
variables.]

Problem 9 x Show commutative semigroups have finitary unification type.
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