
Notes prepared by

Stanley Burris

March 13, 2001

1 Comments on propositional proof systems

In Chapter II of LMCS we looked at the propositional proof system PC
and resolution theorem proving. A number of ideas have been developed
regarding just how one sets up the basic structure of a proof system. We
will look at some of the main ones here.

1.1 Definition of a propositional logic

DEFINITION 1 A propositional logic1 consists of

• S , a set of connectives

• C, the associated algebra of connectives

• X , a set of propositional variables

• C, a set of propositional constants

• T(X), the set of propositional formulas over X

• Axioms

• Rules of inference.

DEFINITION 2 Given a set of propositional formulas Σ and a proposi-
tional formula ϕ we say

• Σ |= ϕ, read “ϕ is a consequence of Σ” if every truth-table evaluation
which makes all formulas in Σ true also makes ϕ true.

• Σ ` ϕ, read “ϕ can be derived from Σ”, if there is a derivation
ϕ1, . . . , ϕn of ϕ, i.e., each ϕi is either an axiom, or a member of Σ, or
the result of applying a rule of inference to previous ϕj ’s, and ϕn = ϕ.

1We consider only two-valued propositional logics in LMCS. And to be more precise,
we work only with Frege/Hilbert and resolution propositional logics. However some other
possibilites are discussed in this addendum to the book.

1

1.2 Algorithms for basic questions about the propositional
calculi

During the early development of propositional calculi, especially in the War-
saw school of the late 1920’s, three basic questions came to the surface — and
in 1946, after Tarski had moved to the U.S., he posed them to his American
audience. In the following we assume that we are working with propositional
calculi whose only rule of inference is modus ponens, and which have a finite
set Σ of axiom schemata.

Q1: Is there an algorithm to determine if Σ is sound and complete?

Q2: Is there an algorithm to determine if Σ is an independent set of schemata?2

Q3: For each finite Σ is there an algorithm to determine which propositional
formulas are derivable?

In 1949 Lineal & Post [4] answered all three questions in the negative
— such algorithms do not exist for Q1 and Q2, and there is a finite Σ
for which there is no algorithm to determine which formulas can be de-
rived. Perhaps this makes the difficulty of the proof of the completeness of
Frege/ÃLukasiewicz seem a little less surprising.

In the late 1920’s ÃLukasiewicz indicated that he was going to write a
comprehensive account of research on the propositional calculi — obviously
such a work would consist of a number of special cases, with no clear pattern
of what to expect in a sound and compete calculus.

He was also interested in finding independent sets of schemata, and the
method of ‘matrices’ was developed by Bernays and him for this purpose.
The basic idea to show that a schema σ cannot be derived from Σ \ {σ} is
to find an algebra A = (A, S), where S is the set of connectives, and an
endomorphism ε : TS −→ A such that

i. ε(ϕ) has some property P for each substitution instance of each schema
different from σ

ii. P is preserved by the rules of inference

iii. ε(σ) does not have P.

In view of the answer to Q2 this method was doomed to be fragmentary.
Nonetheless it is quite useful. Let us use it to show:

2Σ is independent if the removal of any schema leads to a smaller set of derivable
propositions.

2

EXAMPLE 3 A3 cannot be derived from A1 and A2 in Frege/ÃLukasiewicz
propositional calculus.

We can let A = {0, 1} and let the connectives ¬, =⇒ be associated to
the functions:

P ¬P
1 1
0 0

P Q P =⇒ Q

1 1 1
1 0 0
0 1 1
0 0 1

Let ε : T −→ A be such that ε(P) = 0 and ε(Q) = 1. Then any instance
ϕ of A1 or A2 is such that ε(ϕ) = 1. Also if ε(ϕ) = ε(ϕ =⇒ ψ) = 1 then
ε(ψ) = 1. But A3, which is (¬P =⇒ ¬Q) =⇒ (Q =⇒ P), maps to 0
under ε.

Exercises

Problem 1 Show the Frege/ÃLukasiewicz axioms are independent.
[Hint: A 3-element matrix will work in each of the two cases remaining.]

Problem 2 Show the there exists a finite set of independent propositional axioms
Σ such that one cannot use finite matrices to prove their independence.

1.3 Formal systems, proof checkers, and theorem proving

Once we have a formal system, i.e., axioms and rules of inference, it is
fairly routine to write a program to check if a sequence of formulas is in-
deed a derivation. And such programs are usually rather fast. The best
known example is Automath, developed by de Bruijn in the Netherlands.
Automath has been used to check all proofs in Landau’s famous elementary
book Grundlagen der Analysis. Once one has a proof checker it is straight-
forward to consider the possibility of using the proof checker to build an
automated theorem prover.

The most primitive version of a theorem prover would be to start gener-
ating all possible finite strings and check to see which are derivations. Each
time we find a derivation we add the conclusion to our bag of theorems. If
our formal system is complete then every theorem will turn up sooner or
later. However attractive this might sound, we are rapidly defeated by large
numbers.

3

Suppose we have only two symbols, and we want to look at all sequences
of at most 10 strings, each string of length at most 10, to see which are
derivations. Then we will have

10
∑

i=1

2i = 2, 046

many distinct strings to consider, and then

10
∑

i=1

2, 046i > 1033

distinct lists of strings to consider, which is impossible.
The most obvious way to cut down on the time demand is to only look

at strings which are well defined formulas for our formal system. Generating
well defined formulas is quite straightforward – we can make this simpler
by putting some restriction on the number of variables we would like to
consider. Then, in the propositional calculus for example, we would take
the variables and generate new formulas by closing under the propositional
connectives.

In our propositional logics we stated that formulas can be thought of as
the terms for the algebra of connectives. So let us give a general recursion
for the number of terms of an algebraic system with at most v variables and
of length at most l, where we measure the length of a term by putting it
in prefix form and counting the number of symbols occurring. Thus if our
language has m0 constant symbols and mi function symbols of arity i, for
i > 0, then, letting terms(n) be the number of terms of length n, we have:

terms(1) = m0 + v

terms(n) =
∑

i>0

ni ·
∑

l1+···+li=n−1

terms(l1) · · · terms(li)

 for n > 1.

As an example let us look at the Frege/ÃLukasiewicz propositional logic.
We have one binary connective (=⇒) and one unary connective (¬). Thus
m0 = 0, m1 = 1, m2 = 1, and mi = 0 for i > 2. Using the above formulas
we obtain the following values for terms(n) in the cases 1 ≤ v ≤ 5:

4

For v = 1
n terms(n)
1 1
2 1
3 2
4 4
5 9
6 21
7 51
8 127
9 323

10 835

For v = 2
n terms(n)
1 2
2 2
3 6
4 14
5 42
6 122
7 382
8 1 206
9 3 922

10 12 914

For v = 3
n terms(n)
1 3
2 3
3 12
4 30
5 111
6 363
7 1 353
8 4 917
9 18 777

10 71 769

For v = 4
n terms(n)
1 4
2 4
3 20
4 52
5 228
6 804
7 3 444
8 13 780
9 59 588

10 253 252

For v = 5
n terms(n)
1 5
2 5
3 30
4 80
5 405
6 1 505
7 7 255
8 31 155
9 149 455

10 688 655

So if we wanted to sift through all lists of at most ten propositional
formulas of length at most 10, even in one variable, we would have more that
1029 cases, so again we have impossibility. Proof systems in the propositional
calculus offer an alternative to truth tables – but it seems that if they are
to be used for computer theorem proving then one will need to be clever.

1.4 Frege/Hilbert propositional calculi

If we abstract from the various propositional calculi that we have encoun-
tered we see that the key notions are: propositional formula, axioms, rules
of derivation, derivation, and derived formula. The propositional formulas
depend on the choice of connectives. The axioms and most rules can be put
in the form of schemata

ψ1, . . . , ψk

ψ
.

If k = 0 we have an axiom, and if k > 0 we have a rule. The preferred
approach to substitution (since von Neumann, 1927) is to treat the axioms
and rules as schemata, i.e., one is allowed to use any substitution instance
of them, but not to use substitution as an rule of inference. (Note that sub-
stitution cannot be expressed as a scheme of the above form.) A derivation
is then a finite sequence of formulas ϕ1, . . . , ϕn such that each ϕi is either

5

an axiom or the result of applying a rule of inference to previous steps.
The last step ϕn is the derived formula, and we write ` ϕn. The notation
ϕ1, . . . , ϕk ` ϕ means one has a derivation of ϕ from ϕ1, . . . , ϕk, i.e., the
definition of derivation is now extended to permit the appearance of any of
the formulas ϕ1, . . . , ϕk in the derivation sequence. Any such propositional
calculus will be called a Frege/Hilbert propositional calculus. We note that
since substitution is not expressible as a rule (as defined above) we have the
unfortunate situation that Frege’s propositional calculus does not qualify as
a modern Frege/Hilbert propositional calculus.

Given a Frege/Hilbert propositional calculus we say it is sound if `
ϕ =⇒|= ϕ, it is complete if |= ϕ =⇒ ` ϕ, and it is implicationally complete if
ϕ1, . . . , ϕk |= ϕ =⇒ ϕ1, . . . , ϕk ` ϕ. A Frege system (see Cook and Rechkow
[1],[2]) is an implicationally complete and sound Frege/Hilbert propositional
calculus with an adequate set of connectives, each of which has at most two
arguments (for example the propositional calculus PC).

One way to strengthen a Frege system is to permit extension by defi-
nitions, i.e., one is allowed to use definitions of the form P ⇐⇒ ϕ in a
derivation, where P does not occur in ϕ or any previous step. Such proposi-
tional calculi are called extended Frege systems. In extended Frege systems
one can find short (i.e., polynomially bounded) derivations of the pigeonhole
tautologies.

A second way to strengthen a Frege system is to permit substitution
as a rule of inference — however note that when carrying out a derivation
to show Σ ` ϕ, one does not want to apply substitution to the members
of Σ. This can be handled by treating the propositional variables of Σ as
constants.

1.5 Natural deduction propositional calculi

The deduction lemma is a powerful tool of everyday mathematics, namely
to show ϕ =⇒ ψ we assume ϕ and prove ψ. To incorporate this into our
propositional calculus as a rule of inference forces us to modify our notion
of what a line of a proof should look like, namely we need to accommodate
arbitrary finite sets3 of propositions Σ to express the deduction rule:

Σ ∪ {ϕ} ⇒ ψ

Σ ⇒ (ϕ =⇒ ψ)
Note that we have replaced ` by a new symbol ⇒ which is now a part of
our formal language. A (natural deduction) line is an expression Σ ⇒ ϕ,
where Σ is a finite (possibly empty) set of formulas. A derivation is a

3One can also work with finite sequences rather than finite sets.

6

finite sequence of natural deduction lines, each of which is either an axiom
or results from applying a rule of inference to previous members of the
sequence. A derivation of a formula ϕ is a derivation whose last member is
the natural deduction line ⇒ ϕ.

The following is an example of a natural deduction propositional calcu-
lus obtained from Frege/ÃLukasiewicz propositional calculus:

AXIOMS:

(1)
Σ ⇒ (ϕ =⇒ (ψ =⇒ ϕ))

(2)
Σ ⇒ ((ϕ =⇒ (ψ =⇒ χ)) =⇒ ((ϕ =⇒ ψ) =⇒ (ϕ =⇒ χ)))

(3)
Σ ⇒ ((¬ϕ =⇒ ¬ψ) =⇒ (ψ =⇒ ϕ))

RULES OF INFERENCE:

(1)
Σ ⇒ ϕ, Σ ⇒ (ϕ =⇒ ψ)

Σ ⇒ ψ

(2)
Σ ∪ {ϕ} ⇒ ψ

Σ ⇒ (ϕ =⇒ ψ)

(3)
Σ ⇒ (ϕ =⇒ ψ)

Σ ∪ {ϕ} ⇒ ψ

Similarly one can transform any Frege/Hilbert propositional calculus
into a natural deduction propositional calculus. One can define the no-
tions of sound, complete and implicationally complete in an obvious manner,
namely sound means ` Σ ⇒ ϕ =⇒ Σ |= ϕ, complete means |= ϕ =⇒ ` ⇒ ϕ,
and implicationally complete means Σ |= ϕ =⇒ ` Σ ⇒ ϕ. Cook and Reck-
how define a natural deduction system to be a natural deduction proposi-
tional calculus which has a finite number of axioms and rules, an adequate
set of connectives, and is sound and implicationally complete (such as the
example above).

1.6 Gentzen propositional calculi

Gentzen [3] looked at expressions (called sequents) of the form Σ ⇒ Γ, where
Σ and Γ are finite sets4 of formulas. The intended interpretation is that an

4Also one can take sequences of formulas.

7

evaluation which makes all members of Σ true will make some member of
Γ true. A derivation is a finite sequence of sequents such that each member
is either an axiom or the result of applying one of the rules of inference
to previous members. We will call such a propositional calculus a Gentzen
propositional calculus. Such a calculus is sound if ` Σ ⇒ Γ =⇒ Σ |= Γ, com-
plete if |= Γ =⇒ ` Γ, and implicationally complete if Σ |= Γ =⇒ ` Σ ⇒ Γ. A
Gentzen system is a Gentzen propositional calculus which has an adequate
set of connectives, is sound and implicationally complete. One obvious way
to obtain a Gentzen system is to take a natural deduction system and replace
natural deduction lines in the axioms and rules of deduction by sequents,
e.g., replace Σ ⇒ ϕ by Σ ⇒ {ϕ}. Gentzen made use of the popular, and
powerful, cut rule:

CUT
Σ ⇒ Γ ∪ {ϕ}, Σ′ ∪ {ϕ} ⇒ Γ′

Σ ∪ Σ′ ⇒ Γ ∪ Γ′

References

[1] S.A. Cook and R.A. Rechkow, On the lengths of proof in the propositional
calculus, Preliminary version. Proc. Sixth Annual ACM Symposium on

Theory of Computing (1974), 135–148. Corrections for “On the lengths of
proofs in the propositional calculus”. SIGACT News (1974), 15–22.

[2] S.A. Cook and R.A. Rechkow, The relative efficiency of propositional proof
systems. J. Symbolic Logic 44 (1979), 36–50.

[3] G. Gentzen, Untersuchung über das logische Schliessen. Math. Z. 39

(1934), 176–210, 405–431.

[4] S. Lineal and E.L. Post, Recursive unsolvability of the deducibility, Tarski’s
completeness and independence of of axioms problems of propositional cal-
culus (Abstract). Bull. AMS 55 (1949), 50.

8

