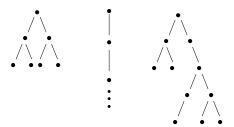
1 The compactness theorem for Propositional Logic

We give a second proof of the important compactness result, Theorem II.8.1 of **LMCS**, using the visual aid of *trees*.

1.1 Binary trees

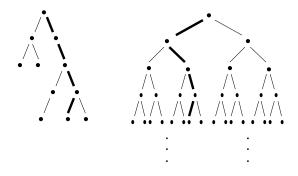
As background to the proof of the compactness theorem we want to introduce the reader to basic notions regarding trees. A *tree* is essentially an upside-down simplified representation of an ordinary tree, e.g.,



Some Examples of trees

The key ingredients of a tree are the *nodes*, indicated in the above figure by solid black circles, and the *edges* connecting them. The node at the top is called the *root* of the tree, and those connected by an edge are said to be *adjacent*. Every node which is not the root has exactly one *adjacent* node above it. A tree is *binary* if every node has at most two adjacent nodes below it. The above examples of trees are binary.

A branch in a binary tree is a path starting at the root and proceeding downward along the edges of the tree, and not stopping unless it comes to a node with no adjacent nodes below it. We give two examples below, the first being a finite branch in a finite binary tree, the second is meant to indicate an infinite branch in an infinite binary tree.



Branches in a Tree

The length of a branch is the number of edges in the branch, which is one less than the number of nodes in the branch. A branch is infinite if it has an infinite number of nodes in it. A tree has arbitrarily long branches if for every positive integer n there is a branch in the tree with length at least n. Clearly a tree with an infinite branch has arbitrarily long branches. In the preceding figure we note that the first binary tree is finite and does not have arbitrarily long branches; whereas the second binary tree is infinite, has arbitrarily long branches, and has infinite branches. The following special case of a famous theorem, called König's Lemma, guarantees an infinite branch for certain binary trees.

LEMMA 1 A binary tree with arbitrarily long branches has an infinite branch.

Proof. The idea is simply that if there are arbitrarily long branches passing through a given node a of a binary tree, then for some node a' adjacent to a and immediately below it one must have arbitrarily long branches passing through a'.

To see this consider the two cases, namely we have one node a_1 or two nodes a_1, a_2 adjacent to and below a. In the first case clearly all the branches through a go through a_1 , and we are finished. In the second case, if we have no branches of length n_i going though a_i , $1 \le i \le 2$, then there are no branches of length $n = \max(n_1, n_2)$ going through a. But this contradicts our assumption that there are arbitrarily long branches through a.

We can start with the root r and repeatedly apply this observation to obtain an infinite branch r, r', r'', \ldots

1.2 Second proof of the compactness theorem

Now we want to apply this lemma to show that a set of propositional formulas is satisfiable iff every finite subset is satisfiable. First we need a technical lemma.

LEMMA 2 Let S be a set of propositional formulas. Then there is a set $S' \subseteq S$ such that

- (a) no two formulas in S' are truth equivalent, and
- (b) Sat(S) iff Sat(S').

Proof

The truth equivalence relation \sim partitions S into equivalence classes. Let S' be a subset of S obtained by choosing exactly one member from each such equivalence class. Then S and S' are satisfied by precisely the same truth evaluations for the variables of S.

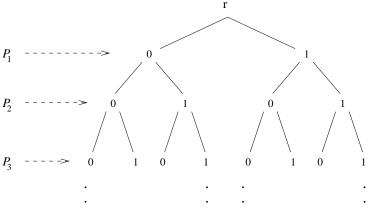
THEOREM [Compactness for Propositional Logic]

Let S be a set of propositional formulas. Then Sat(S) iff $Sat(S_0)$ for every finite $S_0 \subseteq S$.

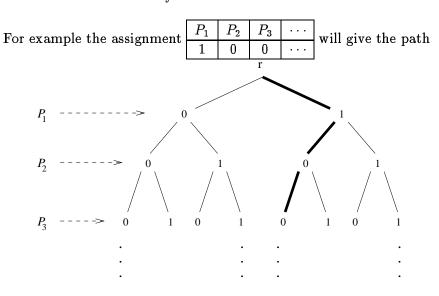
Proof. First we can use Lemma 2 to assume, without loss of generality, that no two formulas in S are truth equivalent. The direction (\Longrightarrow) is clear, so let us prove (\Leftarrow) . Let S be a set of propositional formulas such that each finite subset of S is satisfiable.

Let P_1, P_2, \cdots be the propositional variables occurring in S; and let S_n be the set of formulas in S which mention only variables from P_1, \ldots, P_n . Then S_n has at most 2^{2^n} members (since different members have different truth tables). Thus if only finitely many variables occur in S it follows that S is finite, and therefore satisfiable. So now we assume infinitely many variables occur in S.

A truth evaluation is determined by an assignment of truth values to the propositional variables. Now think of such an assignment as a path through the following binary tree:



Binary Tree of Truth Values



A Path in the Tree

Let T_S be the subtree of this binary tree given by taking all the finite paths $ra_1a_2\cdots a_n$ in the tree such that the truth evaluation $\mathbf{e}=(a_1,\ldots,a_n)$ makes every formula in S_n true. Then clearly T_S is a binary tree, and since one can satisfy any S_n , it must have arbitrarily long branches. Thus, by Lemma 1, the tree T_S must have an infinite branch $ra_1a_2\ldots$ But then the truth evaluation $e_i=a_i$ makes all the formulas in S true, i.e., S is satisfiable.