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1 Clones

As we have seen in II.5 of LMCS, different collections of connectives can
have quite different expressive power. An obvious measure of the expressive
power of a set of connectives is to take all formulas which can be built
out of them, along with their associated truth-tables. However, if we are
only interested in the expressive power up to truth-table equivalence, then
it suffices just to take the set of truth-tables associated with the formulas.
This leads to the notion of a clone.

DEFINITION 1 Given a set A let F(A) be the set of all constants from
A and all finitary functions on A. A clone on A is a subset X of F(A) such
that

i. X is closed under composition;

ii. X contains all projection functions;

iii. a constant c is in X implies that finitary functions with constant value
c are in X;

iv. if a finitary function with constant value c is in X then the constant c

is in X.

Each subset X of F(A) is contained in a smallest clone on A, which we
will call Cl(X). For an algebra A, the clone generated by the fundamental
operations is called the clone of A.

Thus, for example, we can now say that a set S of connectives with
truth-tables X is adequate for the classical propositional calculus if Cl(X) =
F({0, 1}).

A finite algebra A which has the property that its clone is all functions
on A is called a primal algebra. In II.5.1 of LMCS we essentially pointed
out that the two-element Boolean algebra is a primal algebra. One can easily
show that the finite fields GF(p), p a prime, are primal. It is not known if
one can test a finite algebra for primality in polynomial time.
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DEFINITION 2 Given two sets of connectives S1, S2 with associated sets
of truth-tables X1, X2 we will say that S1 and S2 are truth-table equivalent
if Cl(X1) = Cl(X2).

Exercises

Problem 1 Show that the 3-element Post-algebra ({0, 1, 2},∧,′ ), where the oper-
ations are defined by i ∧ j = min(i, j), and 1′ = 2, 2′ = 0, and 0′ = 1, is primal.

Problem 2 Show a finite field GF(pn) is primal iff n = 1.

1.1 Duality

We want to define the notion of dual functions for finitary functions on the
set {0, 1}. So consider f : {0, 1}n −→ {0, 1}. The dual ∆f of f is the
function obtained by interchanging 1 and 0 in the arguments and values of
f , i.e.,

∆f(x0, . . . , xn−1) = ¬f(¬x0, . . . ,¬xn−1).

We say that a function is self-dual if it is equal to its dual.
Two connectives are said to be dual if their associated truth-tables are

dual, and a connective is self-dual if it is its own dual.
For X a set of finitary functions on {0,1} we define ∆X to be the set of

duals of members of X.

THEOREM 3 Cl(∆X) = ∆Cl(X).

Proof. It suffices to show that dual and composition commute. But this is
easy:

(∆f)(∆g0, . . . ,∆gk−1)(x0, . . . , xn−1)
= ¬f(¬(¬g0(¬x0, . . . ,¬xn−1)), . . . ,¬(¬gk−1(¬x0, . . . , xn−1)))
= ¬f(g0(¬x0, . . . ,¬xn−1), . . . , gk−1(¬x0, . . . ,¬xn−1))
= ∆ [f(g0, . . . , gk−1)] (x0, . . . , xn−1).

REMARK 4 • There are 22n−1

self-dual n-ary functions on {0,1} for
n ≥ 2, i.e.,

√
#n-ary functions are self-dual.

• The only self-dual binary functions are the projections and their nega-
tions.
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• The Sheffer stroke and Schröder’s connective are dual.

• The connectives ∨ and ∧ are dual.

• The connective ¬ is self-dual.

1.2 Post’s classification of 2-valued logics

Emil Post classified all possible clones on {0,1}, and hence in a natural sense
all possible 2-valued propositional logics. His work was first presented in
1920 as a companion piece to his Ph.D. Thesis,1 and it was finally published
in the book Two-valued Iterative Systems of Mathematical Logic,2 Prince-
ton, 1941. The classification of E. Post was presented in a more modern
notation by R. Lyndon (see [3]).

Post’s classification of clones on {0, 1} consisted in giving a set of gener-
ating functions for each clone. One consequence of his classification is that
each clone on {0, 1} is finitely generated. We will give a list of bases for the
clones following Lyndon. (Clones come in dual pairs, and only one member
of each such pair will be given.)

We will take as our building blocks the constants

0, 1;

the truth-tables of the standard connectives

¬,∨,∧, =⇒ , ⇐⇒ ;

the function + defined by

x y x + y

1 1 0
1 0 1
0 1 1
0 0 0

the function (x, y, z) defined by

(x, y, z) = x ∧ (y ∨ z);

the function [x, y, z] defined by

[x, y, z] = x ∧ (y ⇐⇒ z);

1His thesis results appear in [4].
2In the preface of his book he says that truth-tables were originated by Keyser.

3



and the functions dn(x0, . . . , xn−1), for n ≥ 3, defined by

dn(x0, . . . , xn−1) =
∨

0≤i≤n−1

x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xn−1,

where the notation x̂i means that xi is omitted.
Now we are ready to give a basis (up to duality) for each of the countably

many clones on {0, 1}:

¬ ¬, 0 ∨ ∨, 0 ∨, 1
∨, 0, 1 ∨,∧ ∨,∧, 0 ∨,∧, 0, 1 +
+,¬ =⇒ ,¬ =⇒ ,∧ x + y + z x + y + z,¬
=⇒ =⇒ , dn (x, y, z) (x, y, z), 0 [x, y, z]

[x, y, z],∨ (x, y, z), dn (x, y, z), dn, 0 [x, y, z], dn d3

d3, x + y + z d3, x + y + z,¬ Ø 1 0,1

Post (1921/1941) suggested that n-valued logics be considered. How-
ever one cannot give such a nice classification even for the 3-valued iterative
systems since there are continuum many. [See Janov & Mucnik ([2]1959);
Hulanicki & Świerczkowski ([1] 1960).] Connectives in n-valued logic can
again be thought of as components in circuits. In multi-valued logic one of
the interests is to find good components for designing circuits.

Exercises

Problem 3 Determine which binary operations on {0,1} generate the same clone.
Problem 4 Determine which ternary operations generate the same clone on {0,1}.
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