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Set Theory: Cantor

As we have seen, the naive use of classes, in particular the connection be-
tween concept and extension, led to contradiction. Frege mistakenly thought
he had repaired the damage in an appendix to Vol. II. Whitehead & Russell
limited the possible collection of formulas one could use by typing. Another,
more popular solution would be introduced by Zermelo. But first let us say
a few words about the achievements of Cantor.

Georg Cantor (1845-1918)
1872 - On generalizing a theorem from the theory of trigonometric series.
1874 - On a property of the concept of all real algebraic numbers.
1879-1884 - On infinite linear manifolds of points. (6 papers)
1890 - On an elementary problem in the study of manifolds.
1895/1897 - Contributions to the foundation to the study of transfinite sets.

We include Cantor in our historical overview, not because of his direct
contribution to logic and the formalization of mathematics, but rather be-
cause he initiated the study of infinite sets and numbers which have provided
such fascinating material, and difficulties, for logicians. After all, a natural
foundation for mathematics would need to talk about sets of real numbers,
etc., and any reasonably expressive system should be able to cope with one-
to-one correspondences and well-orderings.

Cantor started his career by working in algebraic and analytic number
theory. Indeed his PhD thesis, his Habilitation, and five papers between
1867 and 1880 were devoted to this area. At Halle, where he was employed
after finishing his studies, Heine persuaded him to look at the subject of
trigonometric series, leading to eight papers in analysis.

In two papers 1870/1872 Cantor studied when the sequence

ancos(nx) + bysin(nx)

converges to 0. Riemann had proved in 1867 that if this happened on an
interval and the coefficients were Fourier coefficients then the coefficients
converge to 0 as well. Consequently a Fourier series converging on an interval
must have coefficients converging to 0. Cantor first was able to drop the




condition that the coefficients be Fourier coefficients — consequently any
trigonometric series convergent on an interval had coefficients converging to
0. Then in 1872 he was able to show the same if the trigonometric series
converged on [a, b] \ A, provided A™ = @, where A™ is the n'® derived set
of A. The sequence of derived sets is monotone decreasing, and by taking
intersections at appropriate points
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he was led in 1879 to introduce the ordinal numbers 0,1, ---w,---. The key
property of ordinals is that they are well-ordered sets. (A well-ordered set
can be order embedded in the real line iff it is countable.)

We have already mentioned Cantor’s (brief) 1872% description of how
to use Cauchy sequences of rationals to describe the reals. He says that
identifying the geometric line with the reals is an axiom.

Cantor’s first results on cardinality appear in an 1874 paper where he in-
troduces the 1-1 correspondences, and uses them to show that the algebraic
numbers can be put in 1-1 correspondence with the natural numbers; and in
the same paper he proves that such a correspondence between any interval
of reals and the natural numbers is not possible. Thus he has a new proof of
Liouville’s 1844 result on the existence of (infinitely many) transcendental
numbers (in every interval).

In 1878 Cantor proved the (at that time quite paradoxical result) that R"
could be put into 1-1 correspondence with the reals. He wrote to Dedekind
saying | see it, but | don't believe it. Cantor subsequently tried to show that
no such correspondence could be a homeomorphism if n > 1, but a correct
proof would wait till Brouwer (1910).

Next followed Cantor’s publications of a series of six papers, On infinite
sets of reals, written between 1879-1884, in which he refined and extended
his previous work on infinite sets. He introduced countable ordinals « to
describe the sequence of derived sets A(®), and proved that the sequence
would eventually stabilize in a perfect set. From this followed the result that
any infinite closed subset of R is the union of a countable set and a perfect
set. Next he proved that any nonempty perfect subset of R could be put
in one-to-one correspondence with the real line, and this led to the theorem
that any infinite closed set was either countable or had the cardinality of the
real line. Cantor claimed that he would soon prove every infinite subset of R
had the cardinality of the positive integers or the cardinality of R, and thus

!This is the same year he met Dedekind, while on vacation



the cardinality of R would be the second infinity. His proof of what would
later be called the Continuum Hypothesis (more briefly, the CH) did not
materialize. Later Souslin would be able to extend his ideas to show that
analytic sets were either countable or the size of the continuum; attempts to
settle the Continuum Hypothesis would lead to some of the deepest work in
set theory — by Goddel (1940), who showed the consistency of the CH, and
Cohen (1963) who invented forcing to show the independence of the CH.

A particularly famous result appeared in On an elementary problem in
the study of manifolds (1890), namely the set of functions 24, i.e., the set
of functions from A to {0,1}, has a larger cardinality than A, proved by the
now standard diagonal method.

Cantor’s last two papers on set theory, Contributions to the foundations
of infinite set theory, 1895/1897, give his most polished study of cardinal
and ordinal numbers and their arithmetic. He says that the cardinality of a
set is obtained by using our mental capacity of abstraction, by ignoring the
nature of the elements. By looking at the sequence of sizes of ordinals he
obtains his famous N’s (Xg,--- ,N,,,---) which, ordered by their size, form
a well-ordered set in the extended sense, i.e., for any set of N’s there is a
smallest one, and a next largest one. He claims that the size of any set is
one of his N’s — as a corollary it immediately follows that the reals can be
well-ordered. He tried several times to give a proof of this claim about the
N’s; but it was not until 1904, when Zermelo invoked the axiom of choice,
that there would finally be a success.

For his development of ordinal numbers he first looks at linearly ordered
sets and defines + and x for the order types abstracted from them. Next
he shows the order type of the rationals is completely determined by the
properties of being

1. countable
2. order dense, and
3. without endpoints.
Then he characterizes the order type of the interval [0,1] of reals by
1. every sequence has a limit point, and
2. there is a countable dense subset.

Ordinals are then defined as the order types (abstracted from) well-
ordered sets. Exponentiation of ordinals is defined, and the expansion of
countable ordinals as sums of powers of w is examined. The paper ends
with a look at the countable € ordinals, i.e., those a which satisfy w® = «
(and hence their expansion is just w®).

By the end of the nineteenth century Cantor was aware of the paradoxes
one could encounter in his set theory, e.g., the set of everything thinkable



leads to contradictions, as well as the set of all cardinals and the set of all
ordinals. Cantor solved these difficulties for himself by saying there were
two kinds of infinities, the comsistent ones and the inconsistent ones. The
inconsistent ones led to contradictions. This approach, of two kinds of sets,
would be formalized in von Neumann’s set theory of 1925.

Cantor’s early work with the infinite was regarded with suspicion, espe-
cially by the influential Kronecker. However, with respected mathematicians
like Hadamard, Hilbert, Hurwitz, Mittag-Leffler, Minkowski, and Weier-
strass supporting his ideas, in particular at the First International Congress
of Mathematicians in Ziirich (1897), we find that by the end of the century
Cantor’s set theory was widely known and publicized, e.g., Borel’s Lecons
sur la théorie des fonctions was mainly a text on this subject. When Hilbert
gave his famous list of problems in 1900, the Continuum Problem was the
first.

A considerable stir was created at the Third International Congress of
Mathematicians in Heidelberg (1904) when Konig presented a proof that
the size of R was not one of the N’s of Cantor. Cantor was convinced that
the cardinal of every set would be one of his N’s. Konig’s proof was soon
refuted.

The first textbook explicitly devoted to the subject of Cantor’s set theory
was published in 1906 in England by the Youngs, a famous husband and wife
team. The first German text would be by Hausdorff in 1914.
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