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1 Calculus of Classes II: Expressive power in the

Calculus of Classes

Now we return to the Calculus of Classes studied in Chapter I of LMCS to
look at what a first-order formula ϕ( ~X) can say about the classes ~X.

1.1 Quantifier-free formulas

Given an equation ε( ~X) we can find an equivalent equation (using symmetric
difference) p( ~X) ≈ 0. Then using complete expansion we can assume p is a
disjunction of constituents C~a( ~X). Thus we see that

every equation (or set of equations) is simply an asser-
tion about certain constituents being empty.

(One can apply the same to any quantifier-free positive formula.) Thus
an equation follows from others iff each constituent forced by the conclusion
to be empty is a union of the constituents which the premisses force to be
empty.

To handle the syllogisms within the logic of classes one needs negation.
Adding this to our expressive power one can show

every quantifier-free formula is equivalent to a disjunc-
tion of conjunctions of assertions about the constituents
being empty or nonempty.

We can still make remarkable reductions after adding quantifiers. This
will be the topic of the next section.

Exercises
Problem 1

(a) Show that one can find [at most] 22n

(unquantified) equations ε(X1, . . . , Xn)
in the calculus of classes such that for any two of these equations one can find
an assignment such that the two equations have different truth values. [Hint:
Show that every equation is equivalent to one in the form p(X1, . . . , Xn) ≈ 0.]

(b) Show that the number of inequivalent &,∨ combinations of such equations
in the variables X1, . . . , Xn is the same as the number of antichains1 in a

1An antichain is a set of pairwise incomparable (under ≤) elements.
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Boolean algebra2 of size 22n

. [Hint: First show that every such combination
is equivalent to a disjunction of conjunctions of equations of the form p ≈

0. Then show that & can be eliminated. Thus every such combination is
equivalent to one of the form p1 ≈ 0∨ · · · ∨ pk ≈ 0. Next argue that one only
needs to consider cases where the pi are pairwise incomparable.]

1.2 Elimination of Quantifiers

The elimination problem originated in the work of Boole as the elimination
of middle terms from (equational) hypotheses in the Calculus of Classes.
This was extended by Schröder to both equational and negated equational
hypotheses.

It is first in the 1919 paper of Skolem that we find the modern formula-
tion of the elimination problem, in the case of the Calculus of Classes with
numerical predicates, as the elimination of quantifiers; namely for a formula
∃xϕ(x, ~y), where ϕ is quantifier-free, we want to find a quantifier-free formula
ψ(~y) which is equivalent (with respect to the Calculus of Classes). Once one
shows this is possible, then one can also eliminate the universal quantifier
by using ∀xϕ(x, ~y) ∼ ¬∃x¬ϕ(x, ~y), and then eliminating the existential
quantifier from ∃x¬ϕ(x, ~y). Thus being able to eliminate quantifiers from
formulas of the form ∃xϕ(x, ~y) leads to the conclusion that any first-order
formula ϕ(~y) in the Calculus of Classes is equivalent to a quantifier-free ψ(~y)
— simply put ϕ in prenex form, and then eliminate one quantifier at a time,
from the inside out.

Following the work of Skolem, certain syntactic transformations are stan-
dard in quantifier elimination. Let us look at them, and then give the details
of Skolem’s work on the Calculus of Classes.

The standard syntactic transformations
Given a first-order formula:

• first put it in prenex form, say

Q1x1 · · ·Qnxnϕ.

• If Qn is ∀, change it to ¬∃¬. Then we will have an equivalent (perhaps
the same) formula

Q1x1 · · ·Qn−1xn−1 ± ∃xnϕ
′.

2No closed expression is known for this number.
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Now we focus our attention on ∃xnϕ
′, with the intention of eliminat-

ing the existential quantifier. When this has been accomplished, we
return to the above formula, replacing ∃xnϕ

′ with the quantifier-free
equivalent, and start to work on Qn−1, etc.

• Our next step is to put ϕ′ into disjunctive form:

ϕ′ ∼
∨∧

±atomic.

• Then one can move the existential quantifier inside the disjunction:

∃xnϕ
′ ∼ ∃xn

∨∧

±atomic ∼
∨

∃xn

∧

±atomic.

Thus we can now concentrate on eliminating ∃xn from each of the
disjuncts ∃xn

∧

±atomic.

• Now, fixing our attention on one of the disjuncts, xn may not appear
in some of the atomic formulas, so we can pull those atomic formulas
outside the scope of the quantifier:

∃xn

∧

±atomic ∼
[

∃xn

∧

±atomic(x1, · · · , xn)
]

∧
∧

±atomic(x1, · · · , xn−1).

• Thus, to carry out the elimination of quantifiers, it suffices to eliminate
quantifiers in the cases of the form

∃xn

∧

±atomic(x1, · · · , xn),

where xn actually appears in each of the atomic formulas.

The above transformations can be useful even without trying to eliminate
quantifiers. Let us use them to analyze the expressive power of sentences in
the first-order monadic logic3 without equality. Suppose the unary predicate
symbols appearing in ϕ are P1, · · · , Pk. Then ϕ is seen to be equivalent to
a Boolean combination of sentences of the form ∃xiCj(xi), where Cj(xi) is
one of the “constituents” ±P1(xi) ∧ · · · ∧ ±Pk(xi). Now ∃xiCj(xi) simply
says that the “constituent” Cj is not empty.

Thus a first-order sentence in the monadic logic without equality simply
expresses some Boolean combination of the assertions “Cj is empty”. One
can easily determine if such a Boolean combination is true in all structures
(D,P1, · · · , Pk); and thus we have proved the following.

3Recall that this means all relation symbols are unary
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THEOREM 1 One can decide if a sentence in the first-order monadic logic
without equality is valid.

This theorem (in its more general form, with equality) is due to Löwenheim,
1915, with credit given to Skolem, 1919, for a nice proof. Actually Löwenheim
states, with a sketch of a proof, that if a sentence ϕ in this language is
not valid, then it has a finite countermodel. Furthermore his proof gives
an algorithm to determine which is the case; and in the latter case shows
how one can quickly find a finite countermodel. Skolem gives a quantifier
elimination procedure for the calculus of classes with numerical predicates,
presented below, and from this he has a decision procedure for the first-order
statements of this theory. Then he shows that one can easily translate back
and forth between this calculus and first-order monadic logic with equality.
Consequently he can describe the expressive power of first-order sentences in
monadic logic with equality; and he uses this to prove Löwenheim’s assertion
about the existence of finite countermodels.

Now let us turn to Skolem’s 1919 paper [1]. In this he adds numerical
predicates An( ) to the language ∪,∩,′ , 0, 1 of the Calculus of Classes, for
n ≥ 0, with the understanding that, in any given domain, An(X) is to
express the fact that X has at least n elements in it.

DEFINITION 2 For ~y = (y1, · · · , yk), a ~y-constituent is a term of the
form

±y1 ∩ · · · ∩ ±yk.

DEFINITION 3 A Boolean combination of formulas ϕ1, · · · , ϕk is a for-
mula built up from the ϕi using and, or, and not.

THEOREM 4 [Skolem] The first-order theory of the Calculus of Classes
with numerical predicates admits elimination of quantifiers. Indeed,

(a) every formula ϕ(~y) is equivalent, in the Calculus of Classes, to a formula
which is a Boolean combination of numerical assertions about the ~y-
constituents, and

(b) every sentence is equivalent to a Boolean combination of assertions about
the size of the domain.

Proof. First we do some simple transformations. All subformulas of a
given ϕ which involve ≈ can be put in the form p ≈ 0, and hence in the
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form ¬A1(p). Thus ≈ can be eliminated from our formula. It suffices to
show how to eliminate the quantifier in a formula of the form

∃x
∧

±Ai(pi(x, ~y)).

To do this put the term pi in disjunctive form
⋃

±x ∩ ±y1 · · · ∩ ±yk,

and then by repeated use of

Ak(s ∪ t) ∼
k
∨

j=0

Ai(s) ∧Ak−i(t),

for s and t disjoint, we see that it suffices to show how to eliminate the
quantifier from formulas of the form

∃x
∧

±Ai[±x ∩ Cj(~y)],

where each Cj(~y) denotes one of the ~y-constituents.
Now collect the atomic formulas involving each particular constituent

together to obtain

∃x
∧

j

(

∧

i

±Ai[±x ∩ Cj(~y)]

)

.

Then an easy argument shows that this is equivalent in the Calculus of
Classes to

∧

j

∃x

(

∧

i

±Ai[±x ∩ Cj(~y)]

)

.

Consequently we are left with the problem of showing how to eliminate a
quantifier from a formula of the form

∃x

(

∧

i

±Ai[±x ∩ C(~y)]

)

,

for a single constituent C(~y). As Ai+1(x) implies Ai(x) in the Calculus
of Classes, we can reduce such a formula to one involving at at most 4
conjuncts:

∃x
(

Ai1 [x ∩ C(~y)] ∧ ¬Ai2 [x ∩ C(~y)] ∧Ai3 [x
′ ∩ C(~y)] ∧ ¬Ai4 [x

′ ∩ C(~y)]
)

.
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It can also be the case that some of these ±atomic’s are omitted. This can
now be transformed into a Boolean combination of statements of the form

Ai[C(~y)],

in case there are some y’s; and otherwise one has a Boolean combination of
statements of the form

Ai(1),

i.e., assertions about the size of the universe 1.
Thus we have established the elimination of quantifiers, and the claims

about the expressive power of formulas and sentences.

COROLLARY 5 [Skolem] The first-order theory of the Calculus of Classes
is decidable.

Exercises

Problem 2 Prove that a sentence in the Calculus of Classes which is not valid on
all domains is not valid on some finite domain.

Problem 3 Show that a sentence in the Calculus of Classes holds for only finitely
many sizes of the domain, all of which are finite; or it holds for all but finitely many
sizes of the domain, all of which are finite.

Problem 4 Prove that one can eliminate quantifiers in first-order monadic logic
without equality.

Problem 5 [Löwenheim] Prove that a sentence in the first-order monadic logic
with equality which is not valid on all domains is not valid on some finite domain.

Problem 6 Let Fin( ) be unary predicate which is to mean “is finite”. Show that
by adding Fin to the Calculus of Classes with numerical predicates we still have
elimination of quantifiers.

Second-order monadic logic refers to extending first-order monadic logic by
allowing quantification over the (unary) relation symbols.

Problem 7

(a) Show that equality is definable in second-order monadic logic without equal-
ity.

(b) Show that every formula in second-order monadic logic is equivalent to one
in first-order monadic logic with equality.

(c) Show that (the set of valid sentences in) second-order monadic logic is decid-
able.

6



References

[1] Th. Skolem, Untersuchung über die Axiome des Klassenkalküls und über
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