Bootstrapping 0-1 Laws

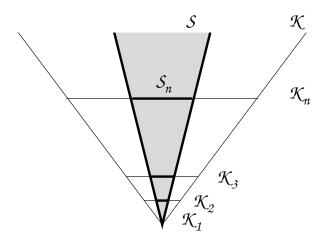
by

Stanley Burris
Dept. of Pure Mathematics
University of Waterloo

ASYMPTOTIC DENSITY

- \bullet $\mathcal{K} = a$ class of finite structures
- $\mathcal{K}_n := \{\text{structures in } \mathcal{K} \text{ of size } n\}$
- $f(n) := \text{number of structures in } \mathcal{K}_n$

Asymptotic Density of $\mathcal{S} \subseteq \mathcal{K}$



density(
$$\mathcal{S}$$
) := $\lim_{\substack{n \to \infty \\ \mathcal{K}_n \neq \emptyset}} \frac{|\mathcal{S}_n|}{|\mathcal{K}_n|}$

0-1 LAWS

If φ is a sentence let

$$\mathcal{K}_{\varphi} := \mathcal{K} \cap \mathsf{Models}(\varphi)$$

 ${\cal K}$ has a <u>0-1 law</u> means:

 \mathcal{K}_{φ} has asymptotic density 0 or 1, for all φ .

EXAMPLES:

- (1) Finite Graphs
- (2) Finite Linear Forests

SPECTRALLY DETERMINED 0-1 LAWS

A context where the counting function f alone can guarantee a 0-1 law.

ADMISSIBLE CLASSES

- ullet $\mathcal K$ is closed under isomorphism
- Members of $\mathcal K$ have a unique decomposition into the (relative) indecomposables of $\mathcal K$
- ullet $\mathcal K$ is closed under disjoint union

These classes are the ones that naturally go with the weighted partition identities. Some are studied in combinatorics.

THE WEIGHTED PARTITION IDENTITY OF AN ADMISSIBLE CLASS $\mathcal K$

- f(n) is the number of structures in \mathcal{K}_n
- g(n) is the number of indecomposable structures in \mathcal{K}_n

We have the "formal identity"

$$1 + \sum_{n=1}^{\infty} f(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-g(n)}.$$

This gives a handy way to remember how to compute f(n) from g(n), namely f(n) is the coefficient of x^n in the expansion of the product of the first n terms on the right.

THE RADIUS OF CONVERGENCE OF $\sum f(n)x^n$

Suppose K is an admissible class.

For simplicity we will assume that the GCD of the sizes of the indecomposables is 1.

THEOREM [Compton, 1987]

$$\mathcal{K}$$
 has a 0-1 law if $\frac{f(n-1)}{f(n)} \to 1$.

One can phrase this as follows:

 \mathcal{K} has a 0-1 law if $\sum f(n)x^n$ has a radius of covergence R=1 by the ratio test.

RESULT #1 [Cayley and Sylvester (1850's), Schur]

Finitely Many Indecomposables

Suppose there are only finitely many indecomposables in an admissible class \mathcal{K} .

Let $r = \sum g(n)$, the number of indecomposables.

Using partial fractions in C(x) one can show

$$f(n) \sim C n^{r-1}$$

From this it easily follows that

$$rac{f(n-1)}{f(n)}
ightarrow 1$$

so $\mathcal K$ has a 0-1 law.

INFINITELY MANY INDECOMPOSABLES

The classic partition identity is

$$1 + \sum_{n=1}^{\infty} p(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-1}$$

where p(n) is the numbers of ways to express n as a sum of positive integers.

In 1918 Hardy and Ramanujan used their circle method to show

$$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$$

Thus $p(n-1)/p(n) \rightarrow 1$.

Such asymptotics are quite difficult to obtain.

RESULT #2 [Meinardus (1954)]

$$1 + \sum_{n=1}^{\infty} f(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-g(n)}$$

with some GRUESOME side conditions

In this rather opaque paper Meinardus also finds explicit asymptotics: $f(n)\sim An^{\alpha}e^{Bn^{\beta}}$ This gives (as 0 < β < 1)

$$rac{f(n-1)}{f(n)}
ightarrow 1.$$

A special case: g(n) = n.

Thus an admissible class $\mathcal K$ with exactly n indecomposables of size n has a 0-1 law.

RESULT #3 [Bateman and Erdös (1956)]

$$1 + \sum_{n=1}^{\infty} f(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-g(n)}$$
 where $g(n) \le 1$ for all n

Using elementary but clever arguments, Bateman and Erdös show that if $g(n) \leq 1$ then one still has

$$rac{f(n-1)}{f(n)}
ightarrow 1.$$

Thus an admissible class ${\cal K}$ with at most one indecomposable of each size has a 0-1 law.

And that is about all there is in the literature to guarantee

$$rac{f(n-1)}{f(n)}
ightarrow 1$$

for the counting function of an admissible class \mathcal{K} .

NEW RESULT: During the Special Year on Logic and Algorithms I discovered a simple bootstrap theorem (with the help of Cam Stewart)

Is this really the first new general result on $f(n-1)/f(n) \rightarrow 1$ in 40 years?

Is this really new?

BOOTSTRAP THEOREM

Suppose \mathcal{K} , \mathcal{K}_1 , \mathcal{K}_2 are admissible classes with

$$g = g_1 + g_2$$

If \mathcal{K}_1 and \mathcal{K}_2 both have a 0-1 law by the ratio test then \mathcal{K} also has a 0-1 law by the ratio test.

COROLLARY

An admissible class K with $g(n) \leq B$ for all n has a 0-1 law.

SUMMARY

For K an admissible class,

$$\frac{f(n-1)}{f(n)} \rightarrow 1$$
 implies the following:

- \mathcal{K} has a 0-1 law
- f is subexponential, i.e., $f(n) = O(c^n)$ for all c > 1

$$\frac{f(n-1)}{f(n)} \rightarrow 1$$
 follows from any of:

- $\sum g(n) < \infty$
- g(n) = n
- $g \leq B$

And we have the Bootstrap Theorem.

OPEN: Does $g(n) = O(n^c)$ imply $\frac{f(n-1)}{f(n)} \to 1$

THE KEY

Let \mathcal{K} be an admissible class.

For φ a first-order sentence one can find

- ullet a finite partition $\mathcal{P}_1,\ldots,\mathcal{P}_s$ of the indecomposables of \mathcal{K} and
- a positive integer c such that

$$\mathsf{Models}(\varphi) = \bigcup \mathcal{S}_i$$

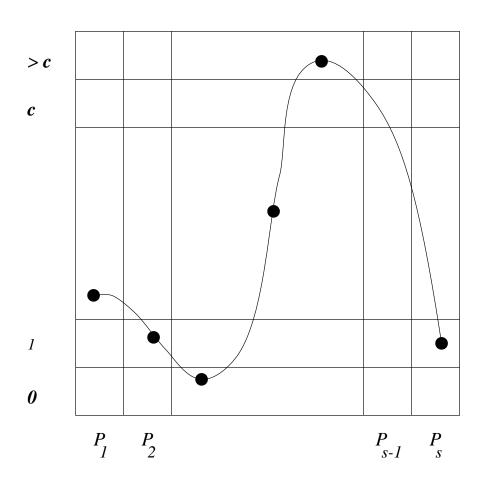
where each \mathcal{S}_i is of the form

$$\lambda_1 \mathcal{P}_1 \cup \cdots \cup \lambda_s \mathcal{P}_s$$

[READ: the collection of structures that have λ_1 indecomposables from \mathcal{P}_1 , etc.]

with each λ_i in $\{0, 1, \dots, c, > c\}$.

"VISUALIZING" $S_j = \sum \lambda_i \mathcal{P}_i$



Thus if one can show each

$$(\geq n_1)\mathcal{P}_1 \cup \cdots \cup (\geq n_s)\mathcal{P}_s$$

has a 0 or 1 asymptotic density, then ${\cal K}$ has a 0-1 law.

THE DENSITY OF $A \cup K$

Let \mathcal{K} be an admissible class with counting function f. Let $\mathbf{A} \in \mathcal{K}$.

Then the density of $\mathbf{A} \cup \mathcal{K}$ is $\lim_{n \to \infty} \frac{f(n-|A|)}{f(n)}$

So $\frac{f(n-1)}{f(n)} o 1$ implies the density of $\mathbf{A} \cup \mathcal{K}$

is 1 for every A in K,

And then, for every partition $\mathcal{P}_1, \ldots, \mathcal{P}_s$ of the indecomposables and for every sequence n_1, \ldots, n_s of nonnegative integers we have:

the density of $(\geq n_1)\mathcal{P}_1 \cup \cdots \cup (\geq n_s)\mathcal{P}_s$ is 1.

Thus \mathcal{K} has a 0-1 law.