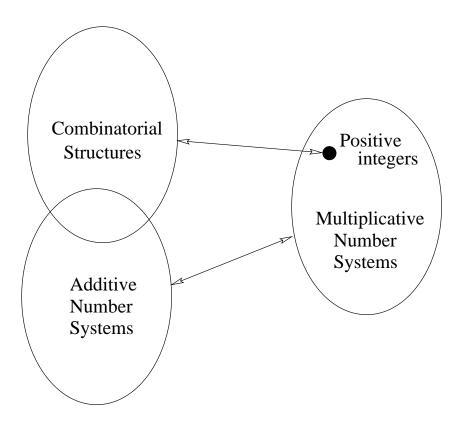
Parallels between Additive Number Systems and Multiplicative Number Systems

Stanley Burris

Pure Mathematics Number Theory Seminar

November, 2002

Parallels



$$\begin{array}{cccc} n & ----- & \log n \\ \text{local} & ---- & \text{global} \\ \text{RT} & ---- & \text{RV} \end{array}$$

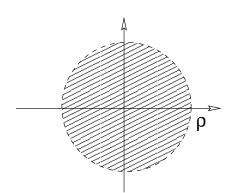
Review

Power Series

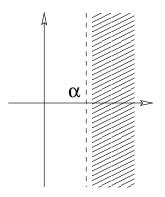
$$\mathbf{A}(z) = \sum_{n \ge 0} a(n) z^n$$

Dirichlet Series

$$\mathbf{A}(s) = \sum_{n \ge 1} a(n) n^{-s}$$



Radius of Convergence Abscissa of Convergence



Cauchy Formula

$$a(n) = \frac{1}{2\pi i} \int_{\mathcal{C}} \mathbf{A}(z) \frac{dz}{z^{n+1}}$$

Perron Formula

$$a(n) = \frac{1}{2\pi i} \int_{\mathcal{C}} \mathbf{A}(z) \frac{dz}{z^{n+1}} \qquad A(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathbf{A}(s) \frac{x^{s}}{s} ds$$

if x is not an integer

Number Systems

Additive Multiplicative $(A,P,+,0,\|\ \|) \qquad \qquad (A,P,\cdot,1,\|\ \|)$ A = the set of "numbers" P = the set of indecomposable "numbers" $\|\ \| \text{ is additive } \qquad \|\ \| \text{ is multiplicative}$

Basic Requirements:

- only finitely many numbers have a given norm
- each number is uniquely decomposable as a sum of indecomposables.

The **Fundamental Identity** of a number system:

Additive Case

$$\mathbf{A}(x) := \sum_{n \ge 0} a(n)x^n = \prod_{n \ge 1} (1 - x^n)^{-p(n)}$$
$$= \exp\left(\sum_{m \ge 1} \mathbf{P}(x^m)/m\right)$$

where

$$P(x) := \sum_{n>1} p(n)x^n.$$

Multiplicative Case

$$\mathbf{A}(x) := \sum_{n \ge 1} a(n)n^{-x} = \prod_{n \ge 2} (1 - n^{-x})^{-p(n)}$$
$$= \exp\left(\sum_{m \ge 1} \mathbf{P}(mx)/m\right)$$

where

$$P(x) := \sum_{n>2} p(n)n^{-x}.$$

Radius/Abscissa of convergence

We have

$$0 \le \rho \le 1$$

$$0 \le \alpha \le \infty$$

$$\rho = 0$$
 fast growth $\alpha = \infty$ fast growth

$$\alpha = \infty$$
 fast growth

$$\rho > 0$$
 slow growth

$$\rho > 0$$
 slow growth $\alpha < \infty$ slow growth

Generating Functions of subsets of A

For $B \subseteq A$

Additive

Multiplicative

$$\mathbf{B}(x) = \sum_{n \ge 0} b(n)x^n \qquad \mathbf{B}(x) = \sum_{n \ge 1} b(n)n^{-x}$$

where b(n) counts the number of elements of B of size n.

Finitely Generated Number Systems show parallel behaviour

Let
$$r = \sum p(n)$$
.

Additive

$$a(n) \sim \left(\prod m^{-p(m)}\right) \cdot \frac{n^{r-1}}{(r-1)!}$$

Multiplicative

$$A(n) \sim \left(\prod (\log m)^{-p(m)} \right) \cdot \frac{(\log n)^r}{r!}$$

Another Parallel Result

Knopfmacher₂ + Warlimont

$$p(n) = a\beta^n + O(\gamma^n)$$

implies

$$a(n) \sim C\beta^n \frac{e^{2\sqrt{an}}}{n^{3/4}}$$

Oppenheim +

$$p(n) = an^{\beta} + O(n^{\gamma})$$

$$p(n) = a\beta^n + O(\gamma^n)$$

$$p(n) = an^{\beta} + O(n^{\gamma})$$
 implies
$$a(n) \sim C\beta^n \frac{e^{2\sqrt{an}}}{n^{3/4}}$$

$$A(x) \sim Cx^{\beta+1} \frac{e^{2\sqrt{a\log x}}}{(\log x)^{3/4}}$$

Asymptotic Density of a subset B of A

Local Density Global Density

$$\delta(\mathsf{B}) = \lim_{n \to \infty} \frac{b(n)}{a(n)} \quad \Delta(\mathsf{B}) = \lim_{x \to \infty} \frac{B(x)}{A(x)}$$

Dirichlet Density of a subset B of A

$$\partial(\mathsf{B}) = \lim_{x \to \rho -} \frac{\mathrm{B}(x)}{\mathrm{A}(x)} \quad \partial(\mathsf{B}) = \lim_{x \to \alpha +} \frac{\mathrm{B}(x)}{\mathrm{A}(x)}$$

need $\rho > 0$

need $\alpha < \infty$

Results that look as though they should have been proved long ago, but are actually very recent

			• • •	•
/	\sim	\sim	1 🛨 1	\sim
\rightarrow	u	()		ive
, ,	\sim	\sim		. • •

Multiplicative

[Bell]

[Bell,...,Richmond]

$$\delta(P) = 0$$
 implies

$$egin{cases}
ho > exttt{0} ext{ and } \ \mathbf{A}(
ho) = \infty \end{cases}$$

[Warlimont]

$$\Delta(P) = 0$$
 implies

$$\Delta(P)=0$$
 implies
$$\begin{cases} \alpha<\infty\\ \mathbf{A}(\alpha)=\infty \end{cases}$$
 [Ruzsa] has a

new

Ratio Test and Regular Variation at Infinity

Definition A sequence s(n) is in RT_{ρ} if it is eventually positive and

$$\lim_{n\to\infty}\frac{s(n-1)}{s(n)} = \rho.$$

Definition A function S(x) is in RV_{α} if it is eventually defined, eventually positive and

$$\lim_{t \to \infty} \frac{S(tx)}{S(t)} = x^{\alpha}$$

for x > 0. We say S(x) has **regular variation** at infinity of index α .

A function in RV_0 is **slowly varying at infinity**.

The parallels in the concepts are clearer if we write:

$$\frac{s(n-k)}{s(n)} \to \rho^k$$
 and $\frac{S(t/x)}{S(t)} \to x^{-\alpha}$

One Reason we like RT and RV

All sets of the If all sets of the form

b + A

have asymptotic density iff RT_{ρ} holds.

form

 $b \cdot A$

have asymptotic density then either RV_{α} holds or the system is discrete.

 RV_{α} implies all sets of the form bA have asymptotic density.

The cases RT_1 and RV_0 were studied first (they yield 0-1 laws).

[Bell]

$p(n) = O(n^c)$ implies RT₁

[Bell]

$$P(x) = O((\log x)^c)$$

implies RV₀

[Bell]

$$p(n) \in \mathsf{RT}_1$$

implies $a(n) \in \mathsf{RT}_1$

[Bell] (Conj II)

$$P(x) \in \mathsf{RV}_0$$

implies $A(x) \in \mathsf{RV}_0$

[Stewart]

$$\mathcal{A}_i \in \mathsf{RT}_1$$
 implies $\mathcal{A}_1 + \mathcal{A}_2 \in \mathsf{RT}_1$

[Odlyzko]

$$\mathcal{A}_i \in \mathsf{RV}_0$$

implies $\mathcal{A}_1 + \mathcal{A}_2 \in \mathsf{RV}_0$

[Karen Yeats] has a common generalization that gives the precise conditions for the sum/product of two number systems to preserve the existence of asymptotic density for all partition sets.

Schur's Theorem

[Schur 1918]

If

- R(x) = S(x)T(x)
- $t(n) \in \mathsf{RT}_{\rho}$
- $\bullet \ \rho_{\rm S} > \rho$

then

$$\lim_{n \to \infty} \frac{r(n)}{t(n)} = \lim_{x \to \rho} \frac{\mathbf{R}(x)}{\mathbf{T}(x)}$$

[Burris/Yeats 2001]

- If $\mathbf{R}(x) = \mathbf{S}(x)\mathbf{T}(x)$ $\mathbf{T}(x) \in \mathsf{RV}_{\alpha}$ $\mathbf{\alpha}_{\mathbf{S}} < \alpha$

$$\lim_{n \to \infty} \frac{r(n)}{t(n)} = \lim_{x \to \rho} \frac{\mathbf{R}(x)}{\mathbf{T}(x)} \qquad \lim_{x \to \infty} \frac{R(x)}{T(x)} = \lim_{x \to \alpha} \frac{\mathbf{R}(x)}{\mathbf{T}(x)}$$

For example these can be used on the alternate form of the fundamental identities

$$\mathbf{A}(x) = e^{\sum_{m\geq 1} \mathbf{P}(x^m)/m} \quad \mathbf{A}(x) = e^{\sum_{m\geq 1} \mathbf{P}(mx)/m}$$

to focus attention on the asymptotics of the count function of $|e^{\mathbf{P}(x)}|$.

Applying Schur to get the asymptotics for the count function of a number system.

Using Schur:

$$= e^{\sum_{m\geq 1} \mathbf{P}(x^m)/m}$$
$$= e^{\mathbf{P}(x)} \cdot e^{\sum_{m\geq 2} \mathbf{P}(x^m)/m}$$

to get

$$a(n) \sim C \cdot [x^n] e^{\mathbf{P}(x)}$$

where

$$C = e^{\sum_{m \ge 2} \mathbf{P}(\rho^m)/m}$$

Using Schur Analog:

$$= e^{\sum_{m\geq 1} \mathbf{P}(x^m)/m} = e^{\mathbf{P}(x)} \cdot e^{\sum_{m\geq 2} \mathbf{P}(x^m)/m} = e^{\mathbf{P}(x)} \cdot e^{\sum_{m\geq 2} \mathbf{P}(x^m)/m}$$

$$= e^{\mathbf{P}(x)} \cdot e^{\sum_{m\geq 2} \mathbf{P}(x^m)/m} = e^{\mathbf{P}(x)} \cdot e^{\sum_{m\geq 2} \mathbf{P}(mx)/m}$$

to get
$$a(n) \sim C \cdot [x^n] e^{\mathbf{P}(x)} \qquad A(x) \sim C \cdot \sum_{n \leq x} [n^{-u}] e^{\mathbf{P}(u)}$$
 here
$$C = e^{\sum_{m \geq 2} \mathbf{P}(\rho^m)/m} \qquad C = e^{\sum_{m \geq 2} \mathbf{P}(m\alpha)/m}$$

$$C = e^{\sum_{m \ge 2} \mathbf{P}(m\alpha)/m}$$

What is a Partition Set?

Let P_1, \ldots, P_k be a partition of the set P of indecomposables into finitely may sets.

Let γ_i be in one of the forms

$$\gamma_i = m_i \qquad \gamma_i = (\leq m_i) \qquad \gamma_i = (\geq m_i).$$

Then a subset B of the form

$$\mathsf{P}_1^{\gamma_1}\cdots\mathsf{P}_k^{\gamma_k}$$

is a partition set.

In other words, B consists of all elements of A which have exactly

 γ_1 indecomposables from P₁,

. . .

 γ_k indecomposables from P_k .

Let (\lozenge) be the property

All **partition sets** have asymptotic density.

Then

$$\begin{array}{ll} (\lozenge) \text{ implies RT}_{\rho} & (\lozenge) \text{ implies discrete or RV}_{\alpha} \\ (\lozenge) \text{ implies } \delta(P) = 0 & (\lozenge) \text{ implies } \Delta(P) = 0 \\ \text{RT}_{1} \text{ implies } (\lozenge) & \text{RV}_{0} \text{ implies } (\lozenge) \end{array}$$

On the next slide we look at **the most powerful conditions** known to imply that (\lozenge) holds when $\rho < 1$, resp. $\alpha > 0$.

[Compton]

If $a(n) \in \mathsf{RT}_{\rho}$ and

$$\frac{a(n-m)}{a(n)} \le C\rho^m$$

for $K \leq m \leq n$ then (\lozenge) holds.

[Sárközy]

If $A(x) \in \mathsf{RV}_{\alpha}$ and

$$\frac{A(x/m)}{A(x)} \le Cm^{-\alpha}$$

for $K \leq m \leq n$ then (\lozenge) holds.

[Bell]

If $p(n) \in \mathsf{RT}_{\rho}$ and

$$\limsup_{n\to\infty} np(n)\rho^n > 1$$

then Compton's conditions for (\lozenge) hold.

[Bell] (Conj III)

If

$$P(x) \sim x^{\alpha} P_0(x) / \log x$$

 $P_0(x) \in \mathsf{RV}_0$, eventually increasing and

$$\lim_{x \to \infty} P_0(x) \in (1/\alpha, \infty)$$

then Sárközy's conditions for (\lozenge) hold.

Admissible Functions

These are functions for which one can use the famous saddle-point method to determine asymptotics for the count function of the series expansion.

[Compton]

If A(x) is Hayman-admissible then Compton's conditions for (\diamondsuit) hold.

[Burris, Warlimont, Yeats]

If A(x) is admissible then Sárközy's conditions for (\lozenge) hold.

A **Tenenbaum admissible** Dirichlet series is admissible.

Admissible Power Series

Suppose

$$\mathbf{A}(z) := \sum_{n>0} a(n)z^n = e^{\mathbf{H}(z)}$$

is Hayman-admissible. Let the Taylor series expansion of $\mathbf{H}(re^{i\theta})$ about $\theta=0$ be

$$\mathbf{H}(re^{i\theta}) = \mathbf{H}(r) + i\mathbf{a}(r)\theta - \mathbf{b}(r)\theta^2/2 + \cdots$$

Theorem.

$$a(n) = \frac{\mathbf{A}(r)}{r^n \sqrt{2\pi \mathbf{b}(r)}} \left(\exp\left(\frac{-(\mathbf{a}(r) - n)^2}{2\mathbf{b}(r)}\right) + R(r, n) \right)$$

where $R(r,n) \to 0$ as $r \to \rho -$, **uniformly** for $n \ge 0$.

The saddle point is r_n , the solution r of

$$\mathbf{a}(r) - n = 0$$

Admissible Dirichlet Series

Suppose

$$A(s) := \sum_{n>1} a(n)/n^s = e^{H(s)}$$

is an admissible Dirichlet series. Let the Taylor series expansion of $\mathbf{H}(\sigma+it)$ about t=0 be

$$\mathbf{H}(\sigma+it) = \mathbf{H}(\sigma) + i\mathbf{a}(\sigma)t - \mathbf{b}(\sigma)t^2/2 + \cdots$$

Theorem.

$$\widehat{A(x)} = \frac{x^{\sigma+1}\mathbf{A}(\sigma)}{\sigma(\sigma+1)\sqrt{2\pi\mathbf{b}(\sigma)}} \Big(\exp\big(\frac{-(\mathbf{a}(\sigma)+\log x)^2}{2\mathbf{b}(\sigma)}\big) + R(\sigma,x)\Big)$$

where $R(\sigma, x) \to 0$ as $\sigma \to \alpha +$, **uniformly** for x > 0.

The **saddle point** is σ_x , the solution σ of

$$\mathbf{a}(\sigma) + \log x = 0.$$