Boole's Equational Treatment of Particular Statements

Stanley Burris

Department of Pure Mathematics

University of Waterloo

December 08, 2001

www.thoralf.uwaterloo.ca

Obstacles to Understanding Boole's Algebra of Logic

• Boole was using **ordinary algebra** with **idempotent symbols** $(X^2 = X)$

He was not using modern Boolean algebra nor Boolean rings.

His work was a blend of partial semantics with formal algebraic manipulation.

0 Empty class 1 Universe XY Intersection of X and YX+Y Union of X and Y if disjoint

X - Y Difference of X and Y if $Y \subseteq X$

Thus 1 - X is the **complement** of X.

 Modern semantics (for categorical propositions) was not available at the time of Boole's work.

Consider the following passage from De Morgan's *Formal Logic*, 1847, pp. 110:

On looking into any writer on logic, we shall see that *existence* is claimed for the significations of all the names. Never, in the statement of a proposition, do we find any reason left for the alternative, *suppose there should be no such thing*.

Regarding the meaning of 'All X is Y' De Morgan goes on to say,

If neither X nor Y exist, I will not . . . attempt to settle what nonexistent things agree or disagree.

Modern semantics was explicitly introduced by Peirce in 1880 when he stated that 'All X is Y' holds when X does not exist.

Peirce notes that the rule of limitation fails in his system.

Peirce's semantics was adopted by Schröder in his famous 3 volumes: Algebra der Logik.

Boole's Translation of Categorical Statements into Equations

Affirmative Propositions

		1847	1848/1854
A	All X is Y	X = XY	X = VY
I	Some X is Y	V = XY	VX = VY

For the Negative Propositions just replace Y by 1-Y in the above.

		1847	1848/1854
E	No X is Y	X = X(1 - Y)	X = V(1 - Y)
Ο	Some X is not Y	V = X(1 - Y)	VX = V(1 - Y)

EXAMPLE: (Conversion by Limitation)

$$\frac{\mathsf{All}\ X\ \mathsf{is}\ Y}{\mathsf{Some}\ Y\ \mathsf{is}\ X}.$$

Boole's 1847 Derivation

Given: X = XY (equivalently, X(1 - Y) = 0).

Solve this for X to obtain X = VY.

[Verify this by substituting into the previous equation X(1-Y)=0.]

Boole's 1854 Derivation

Given: X = VY.

Multiply both sides by V to obtain VX = VVY.

Use the idempotence of V to obtain VX = VY.

The Theme of This Talk

Boole's use of **equations** for the **particular** propositions

	1847	1848/1854
I	V = XY	VX = VY
Ο	V = X(1 - Y)	VX = V(1 - Y)

has been unjustly dismissed by logicians, starting with the rejection by C.S. Peirce.

Boole's system can be easily patched to give a robust system (that will be called BF_3).

Boole Freed From every Flaw

The system BF_3 :

A All
$$X$$
 is Y $X = XY$

I Some X is Y $V = VXY$

$$X = XY$$

I Some
$$X$$
 is Y

$$V = VXY$$

For the negative propositions replace Y by 1 - Y.

The choice for **A** is the same as Boole 1847.

The choice for I lies between Boole 1847 and Boole 1848/1854 since:

$$V = XY$$

$$V = XY$$
 implies $V = VXY$

implies
$$VX = VY$$
.

Kneale and Kneale, *The Development of Logic*, 1962, p. 411

Hailperin, *Boole's Logic and Probability*, 1986, p. 112

OBJECTION: Boole has special rules for interpreting V as 'some', for example:

Some X is not Y
$$VX = V(1 - Y)$$

algebraically leads to

Some Y is not
$$X$$
 $VY = V(1 - X)$

VY is not to be interpreted as 'some Y'.

ANSWER: In BF_3 there are no special rules limiting when one can interpret the symbols as 'some'.

In BF₃ one has

Some X is not
$$Y$$
 $V = VX(1 - Y)$

does not lead to

Some Y is not
$$X$$
 $V = VY(1-X)$

Furthermore we note that in BF_3 any letter can play the role of V.

EXAMPLE: (Limitation)

All
$$X$$
 is Y $X = XY$

leads to

Some
$$X$$
 is Y $X = X(XY)$

C.S. Peirce, On the agebra of logic, 1880, [p. 22]

OBJECTION: 'Some X is not Y' yields, by Boole's algebraic system, 'Some Y is not X'.

ANSWER: (See previous two slides):

(1) Peirce does not realize that Boole has restrictions on when one can interpret V as 'some'.

In Peirce's defence: In Laws Boole does not formulate his restrictions on using V as 'some' until Chapter XV, the last chapter on logic.

(2) Cannot make this inference in BF_3 .

E. Schröder, *Algebra der LogiK Vol. II*, 1891, [p. 92]

OBJECTION: He gives a rigorous proof that one cannot use a system of equations to express 'Some X is Y'.

ANSWER:

(1): He is using modern semantics. His proof uses 0,1 as possible values for X,Y,...

In a footnote he says that further details are needed if the value 0 is excluded.

His proof uses substitution—he actually proves no single equation E(X,Y)=0 can uniformly express 'Some X is Y' using modern semantics.

(2) A minor modification of BF₃ works for modern semantics.

T. Hailperin, *Boole's Logic and Probability*, 1986

He notes (p. 110) that Boole always converts X = VY into X(1 - Y) = 0, but he goes on to say that

OBJECTION: "in the case of the particular categorical there is no easy way out."

ANSWER:

- (1) He is using the modern semantics.
- (2) There is an easy way out: V = VXY
- (3) Actually Boole does not always eliminate the V in the translations of universal statements see Chap. XV of Laws of Thought where Boole gives a uniform treatment of syllogisms.