SUFFICIENT CONDITIONS FOR LABELLED 0-1 LAWS

STANLEY BURRIS AND KAREN YEATS

ABSTRACT. If $\mathbf{F}(x) = e^{\mathbf{G}(x)}$, where $\mathbf{F}(x) = \sum f(n)x^n$ and $\mathbf{G}(x) = \sum g(n)x^n$, with $0 \leq g(n) = \mathcal{O}\left(n^{\theta n}/n!\right)$, $\theta \in (0,1)$, and $\gcd\left(n:g(n)>0\right)=1$, then f(n) = o(f(n-1)).

This gives an answer to Compton's request in Question 8.3 [4] for an "easily verifiable sufficient condition" to show that an adequate class of structures has a labelled first-order 0–1 law, namely it suffices to show that the labelled component count function is $O(n^{\theta n})$ for some $\theta \in (0,1)$. It also provides the means to recursively construct an adequate class of structures with a labelled 0–1 law but not an unlabelled 0–1 law, answering Compton's Question 8.4.

1. Introduction

Exponentiating a power series can have the effect of smoothing out the behavior of the coefficients. In this paper we look at conditions on the growth of the coefficients of $\mathbf{G}(x) = \sum_{n} g(n)x^n$, where $g(n) \geq 0$, which ensure that $f(n-1)/f(n) \to \infty$, where $\mathbf{F}(x) = e^{\mathbf{G}(x)}$.

Useful notation will be $f(n) \prec g(n)$ for f(n) eventually less than g(n) and $f(n) \in \mathsf{RT}_{\infty}$ for $f(n-1)/f(n) \to \infty$; the notation RT stands for the ratio test.

2. The Coefficients of e^{poly}

Proposition 1. Given

$$\begin{aligned} \mathbf{G}(x) &:= & g(1)x + \dots + g(d)x^d, & g(i) \ge 0, \ g(d) > 0, \\ & & \textit{with } \gcd\left(j \le d : g(j) > 0\right) \ = \ 1 \\ \mathbf{F}(x) &:= & \sum_{n > 0} f(n)x^n \ = \ e^{\mathbf{G}(x)}, \end{aligned}$$

the function $\mathbf{F}(x)$ is Hayman-admissible. Thus

(1)
$$f(n) \sim \frac{\mathbf{F}(r_n)}{r_n^n \cdot \sqrt{2\pi \mathbf{B}(r_n)}}$$

where r_n is the unique positive solution to

$$x \cdot \mathbf{G}'(x) = n,$$

and
$$\mathbf{B}(x) := x^2 \mathbf{G}''(x) + x \mathbf{G}'(x)$$
.

Proof. Theorem X of Hayman [6] shows that $\mathbf{F}(x)$ is Hayman-admissible. Then the rest of the claim is an immediate consequence of Corollary II of [6] where the saddle-point method is applied to find the asymptotics of the coefficients of an admissible function.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \text{Primary: } 05\text{A}16,\ \text{Secondary } 03\text{C}13.$

Key words and phrases. ratio test, labelled structure, zero-one law.

Corollary 2. For F(x), G(x) as in the above proposition,

(a) $f(n) \in \mathsf{RT}_{\infty}$,

(b)
$$f(n) = \exp\left(-\frac{n\log n}{d}(1+o(1))\right)$$
.

Proof. Item (a) follows immediately from Corollary IV of Hayman [6]. For item (b) one uses $r_n \mathbf{G}'(r_n) = n$ to obtain:

$$\left(\frac{n}{cdg(d)}\right)^{1/d} \leq r_n \leq \left(\frac{n}{dg(d)}\right)^{1/d} \text{ for } c > 1$$

$$r_n = (1+o(1))\left(\frac{n}{dg(d)}\right)^{1/d}$$

$$r_n^n = (1+o(1))^n \left(\frac{n}{dg(d)}\right)^{n/d}$$

$$\mathbf{B}(r_n) = (1+o(1))d^2g(d)\left(\frac{n}{dg(d)}\right) = (1+o(1))dn$$

$$\mathbf{G}(r_n) = (1+o(1))g(d)r_n^d = (1+o(1))\frac{n}{d}$$

$$\mathbf{F}(r_n) = \exp\left(\frac{n}{d}(1+o(1))\right).$$

Apply these results to (1).

3. Some Technical Lemmas

Now we drop the assumption that G(x) is a polynomial, but keep the requirement

$$\gcd\left(n:g(n)>0\right) = 1.$$

This implies that $f(n) \succ 0$.

Choose a positive integer $L \geq 2$ sufficiently large so

(3)
$$n > L \implies [x^n] \exp\left(g(1)x + \dots + g(L)x^L\right) > 0.$$

Given $\ell > L$ with $g(\ell) > 0$ let

$$\mathbf{G}_{0}(x) := \sum_{n\geq 0} g_{0}(n)x^{n} := \sum_{1\leq n\leq \ell} g(n)x^{n}$$

$$\mathbf{F}_{0}(x) := \sum_{n\geq 0} f_{0}(n)x^{n} := \exp(\mathbf{G}_{0}(x))$$

$$\mathbf{G}_{1}(x) := \sum_{n\geq 0} g_{1}(n)x^{n} := \sum_{n\geq \ell+1} g(n)x^{n}$$

$$\mathbf{F}_{1}(x) := \sum_{n\geq 0} f_{1}(n)x^{n} := \exp(\mathbf{G}_{1}(x)).$$
(4)

Lemma 3. Suppose $r \geq -1$ is such that

$$(5) ng(n) = O(f_0(n+r)).$$

Then

$$n f_1(n) = O(f(n+r)).$$

Proof. In view of (3) and (5) we can choose C_r such that

(6)
$$ng(n) \leq C_r f_0(n+r) \quad \text{for } n+r \geq L+1.$$

Differentiating (4) gives

$$nf_{1}(n) = \sum_{j=\ell+1}^{n} jg(j) \cdot f_{1}(n-j)$$

$$\leq C_{r} \sum_{j=\ell+1}^{n} f_{0}(j+r) \cdot f_{1}(n-j) \text{ by (6)}$$

$$\leq C_{r} \sum_{j=0}^{n+r} f_{0}(j) \cdot f_{1}(n+r-j)$$

$$= C_{r} f(n+r),$$

the last line following from $\mathbf{F}(x) = \mathbf{F}_0(x) \cdot \mathbf{F}_1(x)$.

Lemma 4. Suppose for every integer $r \geq -1$

$$ng(n) = O(f_0(n+r)).$$

Then $f(n-1)/f(n) \to \infty$.

Proof. Since $f_0(n) \in \mathsf{RT}_{\infty}$ by Corollary 2 there is a monotone decreasing function $\varepsilon(n)$ such that for any sufficiently large M we have $\varepsilon(n) > f_0(n)/f_0(n-1)$ for $n \geq M$, and $\varepsilon(n) \to 0$ as $n \to \infty$.

Thus

$$\begin{split} f(n) &= \sum_{0 \leq j \leq n} f_0(j) f_1(n-j) \\ &= \sum_{0 \leq j \leq M-1} f_0(j) f_1(n-j) \ + \sum_{M \leq j \leq n} f_0(j) f_1(n-j) \\ &\leq & \mathrm{o} \left(f(n-1) \right) \ + \ \varepsilon(M) \sum_{M \leq j \leq n} f_0(j-1) f_1(n-j) \\ & \mathrm{by \ Lemma \ 3 \ and \ the \ choice \ of \ } \\ &\leq & \mathrm{o} \left(f(n-1) \right) \ + \ \varepsilon(M) f(n-1). \end{split}$$

Thus

$$\limsup_{n\to\infty}\frac{f(n)}{f(n-1)}\ \le\ \varepsilon(M),$$

and as M can be arbitrarily large it follows that

$$\lim_{n \to \infty} \frac{f(n)}{f(n-1)} = 0.$$

4. Main Result

We are now in a position to prove the main result, making use of

$$n! = \exp(n \log n \cdot (1 + o(1))),$$

which follows from Stirling's result.

Theorem 5. Suppose $\mathbf{F}(x) = \exp(\mathbf{G}(x))$ with $\mathbf{F}(x) = \sum_{n\geq 0} f(n)x^n$, $\mathbf{G}(x) = \sum_{n\geq 1} g(n)x^n$, and $f(n), g(n) \geq 0$. Suppose also that $\gcd(n:g(n)>0)=1$ and that for some $\theta \in (0,1)$

$$g(n) = O(n^{\theta n}/n!).$$

Then

$$f(n) \in \mathsf{RT}_{\infty}$$
.

Proof. From Corollary 2, for any integer $r \geq -1$ and any $\theta \in (0,1)$, by choosing $\ell > L$ such that $1/\ell < 1-\theta$, we have

$$f_0(n+r) = \exp\left(-\frac{(n+r)\log(n+r)}{\ell}(1+o(1))\right)$$
$$= \exp\left(-\frac{n\log n}{\ell}(1+o(1))\right)$$
$$\succeq \frac{n^{\theta n}}{(n-1)!}.$$

Thus $ng(n) = O(f_0(n+r))$. The Theorem then follows from Lemma 4.

5. Best Possible Result

The main result is in a natural sense the best possible.

Proposition 6. Suppose $t(n) \ge 0$ with gcd(n : t(n) > 0) = 1 is such that for any $\theta \in (0,1)$

$$t(n) \neq O(n^{\theta n}/n!).$$

Then there is a sequence $g(n) \ge 0$ with $\gcd(n : g(n) > 0) = 1$ and $g(n) \le t(n)$ but $f(n) \notin \mathsf{RT}_{\infty}$, where one has $\mathbf{F}(x) = \exp(\mathbf{G}(x))$.

Proof. For $\theta \in (0,1)$ let

$$S(\theta) = \left\{ n \ge 1 : t(n) > n^{\theta n}/n! \right\}.$$

Then $S(\theta)$ is an infinite set.

Let M be such that $\gcd(n \leq M : t(n) > 0) = 1$, and let

$$g_1(n) := \begin{cases} t(n) & \text{if } n \leq M \\ 0 & \text{if } n > M \end{cases}$$

$$\mathbf{G}_1(x) := \sum_{n \in \mathbb{Z}} g_1(n) x^n$$

$$d_1 := \deg(\mathbf{G}_1(x))$$

$$\mathbf{F}_1(x) := e^{\mathbf{G}_1(x)}.$$

For $m \geq 2$ we give a recursive procedure to define polynomials $\mathbf{G}_m(x)$; then letting

$$d_m := \deg(\mathbf{G}_m(x))$$

 $\mathbf{F}_m(x) := e^{\mathbf{G}_m(x)},$

by Proposition 1

$$f_m(n) = \exp\left(-\frac{n\log n}{d_m}(1+o(1))\right).$$

To define $G_{m+1}(x)$, having defined $G_m(x)$, let

$$h_m(n) := \frac{1}{n!} \cdot n^{(1-1/2d_m)n}.$$

Then

$$\frac{h_m(n)}{f_m(n-1)} \to \infty \quad \text{as } n \to \infty.$$

Thus we can choose an integer $d_{m+1} > d_m$ such that

$$d_{m+1} \in S\left(1 - \frac{1}{2d_m}\right)$$

 $h_m(d_{m+1}) > f_m(d_{m+1} - 1).$

This ensures that $h_m(d_{m+1}) \leq t(d_{m+1})$. Let

$$\mathbf{G}_{m+1} := \mathbf{G}_m(x) + h_m(d_{m+1})x^{d_{m+1}}.$$

Then

$$\frac{f_{m+1}(d_{m+1})}{f_{m+1}(d_{m+1}-1)} \geq \frac{h_m(d_{m+1})}{f_m(d_{m+1}-1)} > 1.$$

Now let $\mathbf{G}(x)$ be the nonnegative power series defined by the sequence of polynomials $\mathbf{G}_m(x)$; and let $\mathbf{F}(x) = e^{\mathbf{G}(x)}$. Then $g(n) \leq t(n)$ but $f(n) \notin \mathsf{RT}_{\infty}$ as

$$\frac{f(d_{m+1})}{f(d_{m+1}-1)} \ = \ \frac{f_{m+1}(d_{m+1})}{f_{m+1}(d_{m+1}-1)} \ > \ 1.$$

6. Application to 0-1 laws

A class K of finite relational structures is adequate if it is closed under disjoint union and the extraction of components. One can view the structures as being unlabelled with the component count function $p_U(n)$ and the total count function $a_U(n)$, both counting up to isomorphism. The corresponding ordinary generating series are

$${f P}_U(x) \; := \; \sum_{n \geq 0} p_U(n) x^n, \qquad {f A}_U(x) \; := \; \sum_{n \geq 0} a_U(n) x^n$$

connected by the fundamental equation

(7)
$$\mathbf{A}_{U}(x) = \prod_{j \ge 1} (1 - x^{j})^{-p_{U}(j)}.$$

One can also view the structures as being labelled (in all possible ways) with the count functions $p_L(n)$ for the connected members of \mathcal{K} , and $a_L(n)$ for all members of \mathcal{K} . The corresponding exponential generating series are

$$\mathbf{P}_L(x) \ := \ \sum_{n>0} p_L(n) x^n/n!, \qquad \mathbf{A}_L(x) \ := \ \sum_{n>0} a_L(n) x^n/n!$$

connected by the fundamental equation

(8)
$$\mathbf{A}_L(x) = e^{\mathbf{P}_L(x)}.$$

All references to Compton in this section are to the two papers [4] and [5].

6.1. Unlabelled 0-1 Laws for Adequate Classes. Let \mathcal{K} be an adequate class with unlabelled count functions and ordinary generating functions as described above. Compton showed that if the radius of convergence ρ_U of $\mathbf{A}_U(x)$ is positive then \mathcal{K} has an unlabelled 0-1 law¹ iff $a_U(n) \in \mathsf{RT}_1$, that is,

$$\frac{a_U(n-1)}{a_U(n)} \to 1 \text{ as } n \to \infty.$$

 \mathcal{K} is finitely generated if $r = \sum p_U(n) < \infty$, that is, there are only finitely many connected structures in \mathcal{K} . In the finitely generated case the asymptotics for the coefficients $a_U(n)$ have long been known to have the simple polynomial form²

$$a_U(n) \sim C n^{r-1}$$

provided gcd $(n: p_U(n) > 0) = 1$. Item (9) leads to the fact that $a_U(n) \in \mathsf{RT}_1$, and hence to an unlabelled 0–1 law. In addition to using this result, Compton notes that the work of Bateman and Erdös [1] shows that if $p_U(n) \in \{0,1\}$, for all n, then one has $a_U(n) \in \mathsf{RT}_1$.

Both of these results were subsumed in the powerful result of Bell [2] which says that if $p_U(n)$ is polynomially bounded, that is, there is a c such that $p_U(n) = O(n^c)$, then $a_U(n) \in \mathsf{RT}_1$.

6.2. **Labelled 0–1 Laws.** Compton shows that if ρ_L , the radius of convergence of $\mathbf{A}_L(x)$, is positive, then \mathcal{K} has a labelled 0–1 law iff

(10)
$$\frac{a_L(n-k)/(n-k)!}{a_L(n)/n!} \to \infty \quad \text{whenever } p_L(k) > 0.$$

In particular it suffices to show that $a_L(n)/n! \in \mathsf{RT}_{\infty}$.

Compton's method to show that a given adequate class of finite relational structures \mathcal{K} has a labelled 0–1 law is to show that its exponential generating function $\mathbf{A}_L(x) = \sum a_L(n)x^n/n!$ is Hayman-admissible with an infinite radius of convergence. This guarantees that $a_L(n)/n! \in \mathsf{RT}_\infty$ ([6], Corollary IV). However, as Compton notes, showing that $\mathbf{A}_L(x)$ is Hayman-admissible can be quite a challenge.

Question 8.3 of [4] first asks if, in the unlabelled case, the result of Bateman and Erdös, namely $p_U(n) \in \{0,1\}$ implies $a_U(n) \in \mathsf{RT}_1$, can be extended to the much more general statement that $p_U(n) = \mathrm{O}(n^k)$ implies $a_U(n) \in \mathsf{RT}_1$, yielding an unlabelled 0–1 law. As mentioned earlier, this was proved to be true by Bell. The second part of Question 8.3 asks if there is a simple sufficient condition along similar lines for the labelled case. We can now answer this in the affirmative with a result that is an excellent parallel to Bell's result for unlabelled structures.

Theorem 7. If K is an adequate class of structures with

$$p_L(n) = O(n^{\theta n})$$
 for some $\theta \in (0,1)$

¹Given a logic \mathcal{L} , \mathcal{K} has an unlabelled \mathcal{L} 0–1 law means that for any \mathcal{L} sentence φ , the probability that φ holds in \mathcal{K} will be either 0 or 1. In [4] Compton worked with first-order logic, in [5] with monadic second-order logic. In both papers he simply used the phrases "unlabeled 0–1 law" and "labeled 0–1 law".

²This result is usually known as Schur's Theorem [7, 3.15.2]. One can easily find the asymptotics (9) using a partial fraction decomposition of the right side of (7). The labelled case with finitely many components is more difficult—we needed to invoke Hayman's treatise [6] just to obtain the asymptotics for $\log a_L(n)/n!$ (see Corollary 2).

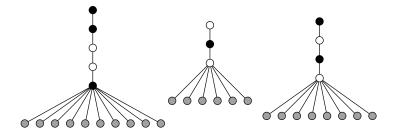


FIGURE 1. Brooms with two-colored handles

then $a_L(n)/n! \in \mathsf{RT}_{\infty}$, and consequently K has a labelled 0-1 law.

Proof. This is an immediate consequence of Theorem 5 and Compton's proof that $a_L(n)/n! \in \mathsf{RT}_{\infty}$ guarantees such a 0–1 law.

Now we list the examples of classes K which Compton shows have a labelled 0–1 law, giving $p_L(n)$ in each case. It is trivial to check in each case that $p_L(n) = O\left(n^{n/2}\right)$; thus the 0–1 law in each case follows from our Theorem 7.

- (a) 7.1 Unary Predicates $p_L(n) = 0$ for n > 1.
- (b) 7.12 Forests of Rooted Trees of Height 1 $p_L(n) = n$.
- (c) 7.15 Only Finitely Many Components $p_L(n)$ is eventually 0.
- (d) 7.16 Equivalence Relations $p_L(n) = 1$.
- (e) 7.17 Partitions with a Selection Subset $p_L(n) = 2^n 1$.

We can now augment this list by, in each case, coloring the members of \mathcal{K} by a fixed set of r colors in all possible ways. This will increase the original $p_L(n)$ by a factor of at most r^n . This will still give $p_L(n) = O(n^{n/2})$. Furthermore, in each of these colored cases let \mathcal{P} be any subset of the connected members, and let \mathcal{K} be the closure of \mathcal{P} under disjoint union. Each such \mathcal{K} has a labelled 0–1 law.

Another application of Theorem 7 is to answer Question 4 of [4] by exhibiting an adequate class \mathcal{K} such that $p_L(n) = O(n^{3n/4})$, hence there is a labelled 0–1 law for \mathcal{K} ; but also such that $\rho_U \in (0,1)$, so \mathcal{K} does not have an unlabelled 0–1 law.

Let the components of K be the one-element tree T_1 along with rooted trees T_{3n} of size 3n and height n consisting of a chain C_n of n nodes, with an antichain L_{2n} of 2n nodes (the leaves of the tree) below the least member of the chain; and the chain C_n is two-colored while the remaining nodes are uncolored. One can visualize these as brooms with 2-colored handles, see Figure 6.2.

The number of unlabelled components is given by $p_U(1) = 1$, $p_U(3n) = 2^n$. Thus the radius of convergence of the ordinary generating function of \mathcal{K} is $\rho_U = \sqrt[3]{2}$. Since this is positive and not 1 it follows from Theorem 5.9(ii) of [4] that \mathcal{K} does not have an unlabelled 0–1 law.

For the number $p_L(3n)$ of labelled components of size 3n:

$$p_{L}(3n) \leq 2^{n} {3n \choose n} n!$$

$$\leq 2^{n} (3n)^{n} \exp (n \log n \cdot (1 + o(1)))$$

$$= \exp (2n \log n \cdot (1 + o(1)))$$

$$= (3n)^{(2/3)(3n)(1 + o(1))}$$

$$= O((3n)^{(3/4)(3n)}).$$

Thus $p_L(n) = O(n^{3n/4})$, so $a_L(n)/n! \in \mathsf{RT}_{\infty}$ by Theorem 7, showing that \mathcal{K} has a labelled 0–1 law.

REFERENCES

- [1] Bateman, P. T.; Erdős, P. Monotonicity of partition functions. Mathematika 3 (1956), 1-14.
- [2] Bell, Jason P. Sufficient conditions for zero-one laws. Trans. Amer. Math. Soc. 354 (2002), no. 2, 613-630.
- [3] Bell, Jason P.; Burris, Stanley N. Asymptotics for logical limit laws: when the growth of the components is in an RT class. Trans. Amer. Math. Soc. **355** (2003), no. 9, 3777-3794.
- [4] Compton, Kevin J. A logical approach to asymptotic combinatorics. I. First order properties. Adv. in Math. 65 (1987), no. 1, 65-96.
- [5] Compton, Kevin J. A logical approach to asymptotic combinatorics. II. Monadic second-order properties. J. Combin. Theory Ser. A 50 (1989), no. 1, 110-131.
- [6] Hayman, W. K. A generalisation of Stirling's formula. J. Reine Angew. Math. 196 (1956), 67-95.
- [7] Wilf, Herbert S. generatingfunctionology. Second edition. Academic Press, Inc., Boston, MA, 1994. x+228 pp.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

 $E ext{-}mail\ address: snburris@math.uwaterloo.ca}$

 URL : www.thoralf.uwaterloo.ca

Department of Mathematics and Statistics, Boston University, 111 Cummington St., Boston, MA 02215, USA

 $E ext{-}mail\ address:$ kayeats@bu.edu