Results on the Equivalence Problem for Finite Groups

STANLEY BURRIS AND JOHN LAWRENCE

ABSTRACT. The equivalence problem for a finite nilpotent group has polynomial time complexity, even when the terms have parameters from the group. The same result holds for the dihedral groups \mathbf{D}_n .

The terms for groups (in the language $\cdot, ^{-1}, e$) are defined inductively by:

- (1) variables are terms
- (2) e is a term
- (3) t is a term implies t^{-1} is a term
- (4) s, t are terms implies $s \cdot t$ is a term.

Given a group G we define the *polynomials* of G to be the terms obtained when we add names for the elements of G to our constant symbols, i.e.,

- (1) variables are polynomials
- (2) g is a polynomial for g denoting an element of G
- (3) p is a polynomial implies p^{-1} is a polynomial
- (4) p, q are polynomials implies $p \cdot q$ is a polynomial.

The term equivalence problem for a group **G** is to determine, for any two terms p,q, if they define the same function on **G**, i.e., if the identity $p \approx q$ holds on **G**.

The polynomial equivalence problem for a group **G** is to determine, for any two polynomials p, q, if they define the same function on **G**, i.e., if the identity $p \approx q$ holds on **G**.

One can, of course, define these equivalence problems for any algebra. In Hunt & Stearns [4] (1990) it is proved that the polynomial equivalence problem for a finite nilpotent ring has polynomial time complexity. And Burris & Lawrence [3] (1992) show that for finite nonnilpotent rings the term equivalence problem is co-**NP**-complete.

It is easy to see that for any finite algebra **A** both the term and the polynomial equivalence problem are in co-**NP**. So if $\mathbf{P} = \mathbf{NP}$ then both problems for **A** have polynomial complexity. However it is widely believed that $\mathbf{P} \neq \mathbf{NP}$.

The classification of the equivalence problem for finite groups is begun in this paper. (The results were announced in [1].) We will show that the polynomial

Date: July 31, 2002.

 $Key\ words\ and\ phrases:$ evquivalence problem, finite groups, terms, polynomials, automated theorem proving, computational complexity.

We are grateful to Joel Berman for his comments on a earlier version of this paper. And both authors thank NSERC for funding which has supported this research.

equivalence problem for any finite nilpotent group, or any dihedral group \mathbf{D}_{2k+1} , is of polynomial time complexity.

Now we turn to finite nilpotent groups. A group $\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$ is *nilpotent* if it satisfies a (left-normed) commutator identity

$$[x_0, \cdots, x_n] \approx e. \tag{1}$$

If **G** is nilpotent we say it is nilpotent class c if c is the smallest n such that (1) holds

In the next definition we use $[\,,\,]$ as a binary operation symbol (for the commutator).

Definition 1. The collection PC of pure commutator polynomials is defined by:

- (1) variables are in PC
- (2) g is in PC for g denoting an element of G
- (3) p, q are in PC implies [p, q] is in PC.

Definition 2. The *leaf count* function lc on PC is defined by:

- lc(x) = 1 for x a variable
- lc(g) = 1 for g naming an element of **G**
- lc([s,t]) = lc(s) + lc(t).

The leaf count function gives the number of leaves when a member of PC is viewed as a binary tree.

Lemma 3. For **G** a nilpotent class c group and for p from PC we have

- (a) lc(p) = c implies $\mathbf{G} \models p \cdot z \approx z \cdot p$ for z a variable not appearing in p, and
- (b) lc(p) > c implies $\mathbf{G} \models p \approx e$.

Proof. This follows from the basic commutator calculus—see Lemma 33.35, p. 86, of H. Neumann [6] (1967). \Box

Definition 4. Given a polynomial p let var(p) be the set of variables occurring in p.

Lemma 5. Let **G** be a finite nilpotent class c group and let $p(x_1, \dots, x_k)$ be a polynomial of **G**. Let S_0, \dots, S_m be an ordering of the subsets of $\{1, \dots, k\}$ of size at most c, and such that $i < j \Longrightarrow |S_i| \le |S_j|$. For $1 \le i \le k$ we assume $S_i \approx \{x_i\}$. Then one can find, for each S_i , a product γ_i of pure commutator polynomials p_{ij} such that

- (a) $var(p_{ij}) = \{x_s : s \in S_i\}$, for all i, j, and
- (b) $\mathbf{G} \models p(x_1, \dots, x_k) \approx \gamma_0 \dots \gamma_m$.

Proof. This is our version of Theorem 33.45, p. 89, of H. Neumann [6] (1967). First put $p(x_1, \dots, x_k)$ into the form $y_1 \dots y_\ell$ where each y_i is in the set $\{x_1, \dots, x_k\}$, or is the name of an element of **G**. Then apply the following group identity

$$x \cdot y \approx y \cdot x \cdot [x, y] \tag{2}$$

to put $y_1 \cdots y_\ell$ in the form $g_0 \cdot x_1^{n_1} \cdots x_k^{n_k} \cdot s(x_1, \cdots, x_k)$, where $g_0 \in G$ and $s(x_1, \cdots, x_k)$ is a product of pure commutators p, with $lc(p) \leq c$ and $var(p) \geq 2$ for each such p. Then let $\gamma_0 = g_0$, and let $\gamma_i = x_i^{n_i}$ for $1 \leq i \leq k$.

Next apply the identity (2) to $s(x_1, \dots, x_k)$ to pull the pure commutator terms involving exactly two variables to the left side, with appropriate grouping, to give $\gamma_{k+1}, \dots, \gamma_{k+\binom{k}{2}}$. Etc.

Lemma 6. Let G be a nilpotent class c group, and let $p(x_1, \dots, x_k)$ be a polynomial of G. Let $\gamma_0, \dots, \gamma_m$ be as in Lemma 5. Then

$$\mathbf{G} \models p(x_1, \dots, x_k) \approx e$$
 iff $\mathbf{G} \models \gamma_i \approx e$ for $0 \le i \le m$.

Proof. (\Longrightarrow) From Lemma 5 we know from $\mathbf{G} \models p \approx e$ that $\mathbf{G} \models \gamma_0 \cdots \gamma_m \approx e$. Putting all variables equal to e shows that $\gamma_0 = e$. Then putting all variables except x_i equal to e gives $\mathbf{G} \models \gamma_i \approx e$, for $1 \leq i \leq k$. Thus $\mathbf{G} \models \gamma_{k+1} \cdots \gamma_m \approx e$. Let $\operatorname{var}(\gamma_{k+1}) = \{x_{i_1}, x_{i_2}\}$. Next by putting all variables except x_{i_1}, x_{i_2} equal to e we have $\mathbf{G} \models \gamma_{k+1} \approx e$. Etc.

The converse is obvious using Lemma 5.

Proposition 7. Let $p(x_1, \dots, x_k)$ be a polynomial of a nilpotent class c group G. Then

$$\mathbf{G} \models p(x_1, \dots, x_k) \approx e$$
 iff $\mathbf{G} \models p(\sigma x_1, \dots, \sigma x_k) \approx e$

for all σ such that

- (a) $\sigma x_i \in \{x_i, e\}$, and
- (b) $|\{i : \sigma x_i \neq e\}| \le c$.

Proof. (\Longrightarrow) This is obvious.

 (\Leftarrow) Let σ satisfy (a) and (b). Choose S_0, \dots, S_m and $\gamma_0, \dots, \gamma_m$ as in Lemma 5, and let j be such that $S_j = \{i : \sigma x_i \neq e\}$. Then, from Lemma 5,

$$\mathbf{G} \models p(\sigma x_1, \cdots, \sigma x_k) \approx \prod_{S_i \subseteq S_j} \gamma_i,$$

so

$$\mathbf{G} \models \prod_{S_i \subseteq S_j} \gamma_i \approx e.$$

As we run over the possible σ we see that this last assertion holds for any $j \leq m$. Then, working through the S_j 's in order, we see that, for $j \leq m$,

$$\mathbf{G} \models \gamma_j \approx e.$$

But then we can apply Lemma 6 to obtain

$$\mathbf{G} \models p(x_1, \cdots, x_k) \approx e.$$

Theorem 8. Let G be a finite nilpotent group. Then the polynomial equivalence problem for G is of polynomial time complexity.

Proof. Let **G** be nilpotent class c, and let $p(x_1, \dots, x_k)$ be a polynomial of **G**. Let

$$T = \{(a_1, \dots, a_k) : |\{i : a_i \neq e\}| \le c\}.$$

By Proposition 7 we see that

$$\mathbf{G} \models p(\vec{x}) \approx e$$
 iff $p(\vec{a}) = e$ for $\vec{a} \in T$.

Now

- $|T| = \sum_{i \leq c} {k \choose i} (|G| 1)^i$, so T is of polynomial size,
- \bullet finding T is a polynomial time procedure, and
- checking $p(\vec{a}) = e$ is a polynomial time procedure.

Thus we have a polynomial time procedure to determine if $\mathbf{G} \models p \approx e$.

The idea of formulating the algorithm in terms of a polynomial size test set T is due to Joel Berman. It also applies to the results of Hunt & Stearns on finite nilpotent rings.

Next we will see that finite nilpotent groups are not the only ones with a polynomial equivalence problem of polynomial time complexity.

Theorem 9. The polynomial equivalence problem for the dihedral group \mathbf{D}_n is of polynomial time complexity, for n odd.

Proof. First we look at the case that n is odd. Let $a, b \in D_n$ with o(a) = n, o(b) = 2. Then all elements of \mathbf{D}_n can be written in the form $a^u b^v$, where u, v are integers. Now we have

$$(a^{u_1}b^{v_1})(a^{u_2}b^{v_2}) = a^{u_1 + (-1)^{v_1}u_2}b^{v_1 + v_2},$$

or, abbreviating $a^u b^v$ to (u, v), we have

$$(u_1, v_1) \cdot (u_2, v_2) = (u_1 + (-1)^{v_1} u_2, v_1 + v_2).$$

By induction this leads to

$$(u_1, v_1) \cdots (u_{\ell}, v_{\ell}) = (u_1 + (-1)^{v_1} u_2 + \dots + (-1)^{v_1 + \dots + v_{\ell-1}} u_{\ell}, \ v_1 + \dots + v_{\ell}).$$
(3)

Now a polynomial $p(x_1, \dots, x_k)$ of \mathbf{D}_n can be put, in polynomial time, into the form $y_1 \cdots y_\ell$, where each $y_i \in \{x_1, \cdots, x_k\} \cup D_n$. Let $\alpha : \{1, \cdots, \ell\} \Longrightarrow \{1, \cdots, k\} \cup D_n$ be such that $y_i = x_{\alpha i}$ if y_i is a variable, and $y_i = \alpha i$ if $y_i = g \in D_n$. Replace each y_i by $(u_{\alpha i}, v_{\alpha i})$, meaning: (i) a pair of variables (over the integers) if $\alpha i \in \{1, \cdots, k\}$, or (ii) a pair of integers such that $g = a^{u_{\alpha i}}b^{v_{\alpha i}}$ if $\alpha i = g \in D_n$. This leads to $p(x_1, \cdots, x_n)$ corresponding to

$$(a^{u_{\alpha 1}}b^{v_{\alpha 1}})\cdots(a^{u_{\alpha \ell}}b^{v_{\alpha \ell}}),$$

or, in our abbreviated notation,

$$(u_{\alpha 1}, v_{\alpha 1}) \cdots (u_{\alpha \ell}, v_{\alpha \ell}).$$

Then, by (3),

$$\mathbf{D}_n \models p(x_1, \cdots, x_k) \approx e$$

holds iff

$$u_{\alpha 1} + (-1)^{v_{\alpha 1}} u_{\alpha 2} + \dots + (-1)^{v_{\alpha 1} + \dots + v_{\alpha (\ell - l)}} u_{\alpha \ell} \equiv 0 \mod n$$
$$v_{\alpha 1} + \dots + v_{\alpha_{\ell}} \equiv 0 \mod 2,$$

and, by putting all, or all but one, of the variable $u_{\alpha i}$'s equal to 0, we see that these two equations hold iff

$$\Sigma_{\alpha i \in D_n} (-1)^{v_{\alpha 1} + \dots + v_{\alpha (i-1)}} u_{\alpha i} \equiv 0 \mod n$$

$$\Sigma_{\alpha i = s} (-1)^{v_{\alpha 1} + \dots + v_{\alpha (i-1)}} \equiv 0 \mod n, \text{ for } 1 \le s \le k$$
(5)

$$\Sigma_{\alpha i=s} (-1)^{v_{\alpha 1} + \dots + v_{\alpha (i-1)}} \equiv 0 \mod n, \text{ for } 1 \le s \le k$$
 (5)

$$v_{\alpha 1} + \dots + v_{\alpha_{\ell}} \equiv 0 \mod 2. \tag{6}$$

Now each $v_{\alpha 1} + \cdots + v_{\alpha(i-1)}$ is a sum of variables and integers, so the equations (4) and (5) can be written in the form

$$\epsilon_1 \cdot (-1)^{a_{11}v_1 + \dots + a_{1k}v_k} + \dots + \epsilon_r \cdot (-1)^{a_{r1}v_1 + \dots + a_{rk}v_k} \equiv 0 \mod n,$$
 (7)

where $\epsilon_i \in \{0, \dots, n-1\}$, $a_{ij} \in \{0, 1\}$, and no two rows of the $r \times k$ matrix (a_{ij}) are the same. Let $\eta_i = (-1)^{v_i}$, and define a ring polynomial $q \in \mathbf{Z}_n[w_1, \cdots, w_k]$ by

$$q(w_1, \cdots, w_k) = \sum_{1 \le i \le r} \epsilon_i \cdot \prod_{1 \le j \le k} w_j^{a_{ij}}.$$

As the η_i can independently take on the values in $\{1, -1\}$, and no other values, the equation (7) is equivalent to

q vanishing in
$$\mathbf{Z}_n$$
 as the w_i range over $\{1, -1\}$. (8)

Now the final part of the polynomial algorithm is to realize that (8) holds iff

$$q(w_1, \dots, w_k)$$
 is simply the 0 polynomial. (9)

This can be proved by induction on k, namely show that if q is not the zero polynomial then for some assignment c_i of values of the w_i in $\{1,-1\}$ we have $q(c_1,\cdots,c_k)\neq 0 \text{ in } \mathbf{Z}_n.$

The proof proceeds simply by writing $q(w_1, \dots, w_k)$ in the form

$$q'(w_1, \dots, w_{k-1}) + (1 - w_k) \cdot q''(w_1, \dots, w_{k-1}),$$

and noting that if q is not the zero polynomial then choose a ± 1 assignment of w_1, \dots, w_{k-1} such that one of q' and q'' does not vanish in \mathbf{Z}_n . Then either $w_k = 1$ or $w_k = -1$ will yield a nonvanishing value of $q(w_1, \dots, w_k)$ since we have assumed n is odd. Item (9) gives us a polynomial time algorithm to determine if the equations in (4) and (5) hold. And determining if (6) holds is quite easy.

This takes care of the case for n odd. To handle the general case let $n = 2^k \cdot m$, where m is odd. Then one can embed \mathbf{D}_n into $\mathbf{D}_{2^k} \times \mathbf{D}_m$, and both \mathbf{D}_{2^k} and \mathbf{D}_m embed into \mathbf{D}_n . Thus one has a polynomial time algorithm for the polynomial equivalence problem for \mathbf{D}_n as one has such for \mathbf{D}_m by the above, and for \mathbf{D}_{2^k} by Theorem 9 (as \mathbf{D}_{2^k} is nilpotent).

The result for \mathbf{D}_n holds, by the same methods, for other finite groups which can be presented by defining relations of the form o(a) = n, o(b) = m, and $b^{-1}ab =$ a^{j} , where gcd(j,n)=1 and o(j)=2 in \mathbf{Z}_{n} . On the other hand Lawrence has proved that any finite nonsolvable group has a co-NP-complete term equivalence problem—hence the following question is appropriate.

Problem 1. Does every finite solvable group have a term [polynomial] equivalence problem of polynomial time complexity?

References

- S. Burris, Computers and universal algebra: some directions. Algebra Universalis 34 (1995), 61–71.
- [2] S. Burris and J. Lawrence, The equivalence problem for finite rings. J. Symbolic Computation 15 (1993), 67–71.
- [3] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra. Springer-Verlag, 1981.
- [4] H.B. Hunt III and R.E. Stearns The complexity of equivalence for commutative rings. J. Symbolic Computation 10 (1990), 411–436.
- [5] O.G. Kharlampovich and M.V. Sapir, Algorithmic problems in varieties. Internat. J. Algebra Comput. 5 (1995), 379–602.
- [6] H. Neumann, Varieties of Groups. Springer-Verlag, 1967.

Dept. of Pure Mathematics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

E-mail address: snburris@thoralf.uwaterloo.ca

Dept. of Pure Mathematics, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

 $E ext{-}mail\ address: jwlawren@math.uwaterloo.ca}$