Boolean Products of Indecomposables

STANLEY BURRIS

Recently Vaggione [2] proved that discriminator varieties V are characterized by the two properties: FHP and $V = I\Gamma^a(V_{\rm DI})$. He asked if one could replace FHP by the weaker property BFC. In this note we point out that BFC + $V = I\Gamma^a(V_{\rm DI})$ leads to every directly indecomposable being simple, and furthermore the class $V_{\rm S}$ of simples in V is defined by a set of universal sentences.

The proof that V_{DI} is axiomatized by universal sentences is similar to the proof in [1]. First suppose that $\mathbf{B} \leq \mathbf{D} \in V_{\text{DI}}$, and we want to show that $\mathbf{B} \in V_{\text{DI}}$. We assume that \mathbf{B} is not trivial. Let \mathbf{A} be the subalagebra of $\mathbf{D}[\mathcal{C}]^*$ consisting of those f which satisfy $f(x_0) \in B$. Then $\mathbf{A} = \mathcal{PS}(\mathbf{A})$ as \mathbf{A} is a Boolean product with clopen equalizers, and the stalks on a dense set are directly indecomposable. From our assumptions we know $\mathbf{A} \cong \mathbf{A}' \in \Gamma^a(V_{\text{DI}})$, so we can assume $\mathrm{Triv}(\mathbf{A}') = \emptyset$. Then $\mathbf{A}' = \mathcal{PS}(\mathbf{A}')$, so $\mathcal{PS}(\mathbf{A}) = \mathcal{PS}(\mathbf{A}')$. This guarantees that $\mathbf{B} \in V_{\text{DI}}$, so V_{DI} is closed under subalgebras.

To show V_{DI} is closed under ultraproducts let $\mathbf{D}_i \in V_{\text{DI}}$, for $i \in I$. Then we argue as in [1] that the stalks of $\mathcal{PS}(\prod_{i \in I} \mathbf{D}_i)$ are the ultraproducts $\prod_{i \in I} \mathbf{D}_i / \mathcal{U}$. By hypothesis there is a \mathbf{B} such that

$$\mathcal{PS}(\prod_{i\in I}\mathbf{D}_i)\cong\mathbf{B}\in\Gamma^a(V_{\mathrm{DI}}).$$

We can assume $Triv(\mathbf{B}) = \emptyset$. Thus $\mathcal{PS}(\mathbf{B}) = \mathbf{B}$, so

$$\mathcal{PS}(\prod_{i\in I}\mathbf{D}_i) \stackrel{=}{=} \mathcal{PS}(\mathbf{B}),$$

and thus each of the ultraproducts $\prod_{i \in I} \mathbf{D}_i / \mathcal{U}$ is in V_{DI} .

Combining the above two results we see that $V_{\rm DI}$ is a class of algebras defined by universal sentences.

Now suppose $\alpha: \mathbf{D} \to \mathbf{B} \in V_{\mathbf{S}}$ where α is not 1-1 and \mathbf{B} is not trivial. Let \mathbf{A} be the modification of $\mathbf{B}[\mathcal{C}]^*$ obtained by replacing the stalk \mathbf{B} at x_0 by \mathbf{D} , and letting the elements of \mathbf{A} be obtained by taking the elements f of $\mathbf{B}[\mathcal{C}]^*$ by any g that agrees with f off x_0 , and such that $\alpha(g(x_0)) = f(x_0)$. Then \mathbf{A} is in $\Gamma(V_{\mathrm{DI}}) \setminus \Gamma^a(V_{\mathrm{DI}})$. Choose \mathbf{A}' such that $\mathbf{A} \cong \mathbf{A}' \in \Gamma^a(V_{\mathrm{DI}})$. We can assume that $\mathrm{Triv}(\mathbf{A}') = \emptyset$.

1

Then $\mathbf{A}' = \mathcal{PS}(\mathbf{A}') = \mathcal{PS}(\mathbf{A})$. For ϕ a factor congruence of \mathbf{A} we have $\phi_x \in \{\Delta, \nabla\}$. For x such that $\phi_x = \nabla$ we can choose $f, g \in A$ such that $f \neq g$ on a neighborhood M of x. Then $\phi_x = \nabla$ on M, so $\phi_x = \nabla$ on an open subset of X. Likewise $\overline{\phi}_x = \nabla$ on an open subset of X, where $\phi, \overline{\phi}$ is a pair of factor congruences of \mathbf{A} . Consequently $\phi_x = \Delta$ on a clopen set N, $\overline{\phi}_x = \Delta$ on $X \setminus N$, and this leads to ϕ being a transparent factor congruence. Thus $\mathbf{A} = \mathcal{PS}(\mathbf{A})$, so $\mathbf{A} = \mathbf{A}'$. But this is a contradiction as one belongs to $\Gamma^a(V_{\mathrm{DI}})$, but not the other.

From the last paragraph we see that every finitely generated $\mathbf{A} \in V_{\mathrm{DI}}$ must be simple (otherwise it has a proper nontrivial simple quotient). And then every $\mathbf{A} \in V_{\mathrm{DI}}$ is simple (as finitely generated subalgebras are in V_{DI} , and hence simple). Thus we have proved the following:

Theorem 1. Let V be a variety with BFC such that $V = I\Gamma^a(V_{DI})$. Then V_{DI} consists only of simple algebras, and it is a class defined by universal sentences.

References

- D. Bigelow and S. Burris, Boolean algebras of factor congruences. Acta Sci. Math. 54 (1990), 11–20.
- [2] D. Vagggione, A characterization of discriminator varieties. Proc. Amer. Math. Soc. 129 (2001), 663–666.