The Dedekind-Peano Number System

Let P be the set of positive natural numbers. Let ' be the successor function.

PEANO'S AXIOMS

P1: 1 is not the successor of any number.

P2: If m' = n', then m = n.

P3: (*Induction*) If $X \subseteq P$ is closed under successor, and if $1 \in X$, then X = P.

Definition B.0.1 [Addition] Let addition be defined as follows:

i.
$$n + 1 = n'$$

ii.
$$m + n' = (m + n)'$$

Lemma B.0.2 m' + n = m + n'

Proof: (By induction on n.)

For
$$n=1$$
:

$$m'+1 = (m')'$$
 by
$$= (m+1)'$$
 by
$$= m+1'$$
 by

(LMCS, Appendix B) Dedekind-Peano.3

Induction Hypothesis: m' + n = m + n'

Proof of Induction Step:

$$m' + n' = (m' + n)'$$
 by
$$= (m + n')'$$
 by
$$= m + n''$$
 by

B.0.1 ii Ind Hyp B.0.ii

Lemma B.0.3 m' + n = (m + n)'

Proof:

$$m' + n = m + n'$$
 by B.0.2
= $(m + n)'$ by B.0.1 ii

Lemma B.0.4 1 + n = n'

Proof: (By induction on n.)

For n = 1:

$$1+1 = 1'$$
 by B.0.1 i

Induction Hypothesis: 1 + n = n'

Proof of Induction Step:

1 + n' = (1 + n)' by

= n'' by

B.0.1 ii

Ind Hyp

Lemma B.0.5 1+n = n+1

Proof:

1+n = n' by

= n+1 by

B.0.4

B.0.1 i

(LMCS, Appendix B)

Dedekind-Peano.5

Lemma B.0.6 m + n = n + m

Proof: (By induction on n.)

For n = 1:

$$m+1 = 1+m$$
 by

B.0.5

Induction Hypothesis: m+n = n+m

Proof of Induction Step:

$$m+n'=(m+n)'$$
 by
$$=(n+m)'$$
 by
$$=n+m'$$
 by
$$=n'+m$$
 by

B.0.1 ii

Ind Hyp

B.0.1 ii

B.0.2

Definition B.0.8 [Multiplication]

Let multiplication be defined as follows:

i.
$$n \cdot 1 = n$$

ii.
$$m \cdot n' = (m \cdot n) + m$$

Definition B.0.15 [Exponentiation]

Let exponentiation be defined as follows:

i.
$$a^1 = a$$

ii.
$$a^{n'} = a^n \cdot a$$