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First–Order Logic

This is the most powerful, most expressive

logic that we will examine.

Our version of first-order logic will use the

following symbols:

• variables

• connectives (∨,∧,→,↔,¬ )

• function symbols

• relation symbols

• constant symbols

• equality (≈)

• quantifiers (∀,∃)
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Formulas for a first-order language L are

defined inductively as follows:

• There are two kinds of atomic formulas:

(s ≈ t) , where s and t are terms, and

(rt1 · · · tn) , where r is an n–ary relation

symbol and t1, · · · , tn are terms.

• If F is a formula, then so is (¬ F) .

• If F and G are formulas, then so are

(F ∨ G) , (F ∧ G) , (F → G) , (F ↔ G) .

• If F is a formula and x is a variable, then

(∀x F) and (∃x F) are formulas.
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Notational Conventions

• Drop outer parentheses

• Adopt the previous precedence conventions

for the propositional connectives.

• Quantifiers bind more strongly than any of

the connectives.

Thus ∀y (rxy) ∨ ∃y (rxy)

means (∀y (rxy)) ∨ (∃y (rxy)) .
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The subformulas of a formula F :

• The only subformula of an atomic formula

F is F itself.

• The subformulas of ¬ F are ¬ F itself

and all the subformulas of F.

• The subformulas of F¤G are F¤G itself

and all the subformulas of F and all the

subformulas of G. ( ¤ is any of ∨, ∧, →, r ↔).

• The subformulas of ∀x F are ∀x F itself

and all the subformulas of F.

• The subformulas of ∃x F are ∃x F itself

and all the subformulas of F.
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An occurrence of a variable x in a formula

F is:

• bound if the occurrence is in a subformula

of the form ∀xG or of the form ∃xG

(such a subformula is called the scope of the

quantifier that begins the subformula).

• Otherwise the occurrence of the variable is

said to be free.

• A formula with no free occurrences of

variables is called a sentence.
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Given a bound occurrence of x in F, we say

that x is bound by an occurrence of a

quantifier Q if

(i) the occurrence of Q quantifies the

variable x, and

(ii) subject to this constraint the scope of

this occurrence of Q is the smallest in which

the given occurrence of x occurs.
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It is easier to explain scope, and quantifiers

that bind variables, with a diagram:

( r( ) (

Scopes of quantifiers are underlined

An occurrence

of the variable

x

x

bound by

y ( ( ( r ) ) )) zxy ( r )x xzx
A A E
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The following figure indicates all the bound

and free variables in the previous formula:

( r( ) (x y ( ( ( r ) ) )) zxy ( r )x xzx

free occurrences 

bound occurrences
A A E
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Examples

b. 2+ 2 < 3 is also an atomic sentence,

which says “four is less than three.”

False in N.

c. ∀x∃y (x < y) says that “for every number

there is a larger number.”

True in N.

d. ∃y∀x (x < y) says that “there is a number

that is larger than every other number.”

False in N.
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f. ∀x
(

(0 < x)→ ∃y (y · y ≈ x)
)

says that

“every positive number is a square.”

False in N.

h. ∀x∀y

(

(x < y)→ ∃z
(

(x < z) ∧ (z < y)
))

says that “if one number is less than another,

then there is a number properly between the

two.”

False in N.
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We will use the shorthand notation

∧

1≤i≤n

Fi

to mean the same as the notation

F1 ∧ · · · ∧ Fn.

Likewise, we will use the notations

∨

1≤i≤n

Fi

and

F1 ∨ · · · ∨ Fn.
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English to First-order

Given a first–order formula F(x) we can find

first–order sentences to say

a. There is at least one number such that

F(x) is true in N.

∃x F(x)

b. There are at least two numbers such that

F(x) is true in N.

∃x∃y
(

¬ (x ≈ y) ∧ F(x) ∧ F(y)
)
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c. There are at least n numbers (n fixed)

such that F(x) is true in N.

∃x1 · · · ∃xn

((
∧

1≤i<j≤n¬ (xi ≈ xj)
)

∧
(
∧

1≤i≤n F(xi)
))

d. There are infinitely many numbers that

make F(x) true in N.

∀x∃y
(

(x < y) ∧ F(y)
)

e. There is at most one number such that

F(x) is true in N.

∀x∀y
(

(F(x) ∧ F(y))→ (x ≈ y)
)
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Definable Relations

To better understand what we can express

with first–order sentences we need to

introduce definable relations.

Given a first–order formula F(x1, . . . , xk) we

say

F is “true” at a k–tuple

(a1, . . . , ak) of natural numbers

if the expression F(a1, . . . , ak) is a true

statement about the natural numbers.



(LMCS, p. 325) V.15

Example

Let F(x, y) be the formula x < y.

Then F is true at (a, b) iff a is less than b.

Example

Let F(x, y) be ∃z (x · z ≈ y).

Then F is true at (a, b) iff a divides b,

written a|b.

[Note: Don’t confuse a|b with
a

b
.

The first is true or false.

The second has a value.

Check that a|0 for any a, including a = 0.]
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Definition

For F(x1, . . . , xk) a formula let FN be the

set of k–tuples (a1, . . . , ak) of natural

numbers for which F(a1, . . . , ak) is true in

N. FN is the relation on N defined by F.

Definition

A k–ary relation r ⊆ Nk is definable in N

if there is a formula F(x1, . . . , xk) such that

r = FN .
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Example (Definable Relations)

• x is an even number is definable in N

by

∃y (x ≈ y+ y)

• x divides y is definable in N by

∃z (x · z ≈ y)

• x is prime is definable in N by

(1 < x) ∧ ∀y

(

(y|x)→
(

(y ≈ 1) ∨ (y ≈ x)
))

• x ≡ y modulo n is definable in N by

∃z
(

(x ≈ y+ n · z) ∨ (y ≈ x+ n · z)
)
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We will adopt the following abbreviations:

• x|y for the formula ∃z (x · z ≈ y)

• prime(x) for the formula

(1 < x) ∧ ∀y

(

(y|x)→
(

(y ≈ 1) ∨ (y ≈ x)
))

.

Note that in the definition of prime(x)

we have used the previous abbreviation.

To properly write prime(x) as a

first–order formula we need to replace

that abbreviation; doing so gives us

(1 < x) ∧ ∀y

(

∃z (y · z ≈ x)→
(

(y ≈ 1) ∨ (y ≈ x)
))
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Abbreviations are not a feature of first–order

logic, but rather they are a tool used by

people to discuss first–order logic.

Why do we use abbreviations? Without them,

writing out the first–order sentences that we

find interesting would fill up lines with

tedious, hard–to–read symbolism.



(LMCS, p. 326) V.20

Given: x|y abbreviates ∃z (x · z ≈ y .

Then (u+1)|(u ·u+1) is an abbreviation for

∃z ((u+1) · z ≈ u · u+1)

Now let us write out z|2 to obtain

∃z (z · z ≈ 1+ 1)

Unfortunately, this last formula does not

define the set of elements in N that

divide 2. It is a first–order sentence that

is simply false in N—the square root of 2

is not a natural number.
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We have stumbled onto one of the subtler

points of first–order logic, namely, we must

be careful with substitution.

The remedy for defining “z divides 2” is to

use another formula, like

∃w (x · w ≈ y),

for “x divides y.”
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We obtain such a formula by simply renaming

the bound variable z in the formula for x|y.

With this formula we can correctly express

“z divides 2” by ∃w (z · w ≈ 2).

The danger in using abbreviations in

first–order logic is that we forget the names

of the bound variables in the abbreviation.
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Our solution: add a ? to the abbreviation to

alert the reader to the necessity for renaming

the bound variables that overlap with the

variables in the term to be substituted into

the abbreviation.

For example, prime?(y+ z) alerts the reader

to the need to change the formula for

prime(x), say to

(1 < x) ∧ ∀v

(

(v|x)→
(

(v ≈ 1) ∨ (v ≈ x)
))

,

so that when we substitute y+ z for x in

the formula, no new occurrence of y or z

becomes bound.



(LMCS, p. 327) V.24

Thus we could express prime(y+ z) by

(1 < y + z) ∧ ∀v
(

(v|?(y + z))→
(
(v ≈ 1) ∨ (v ≈ y + z)

))

.

Examples

[Expressing statements in first-order logic.]

a. The relation “divides” is transitive.

∀x∀y∀z

((

(x|y) ∧ (y|?z)
)

→ (x|?z)

)

b. There are an infinite number of primes.

∀x∃y
(

(x < y) ∧ prime?(y)
)
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d. There are an infinite number of pairs of

primes that differ by the number 2.

(Twin Prime Conjecture)

∀x∃y
(

(x < y) ∧ prime?(y) ∧ prime?(y+2)
)

e. All even numbers greater than two are the

sum of two primes.

(Goldbach’s Conjecture)

∀x

((

(2|x) ∧ (2 < x)
)

→

∃y∃z
(

prime?(y) ∧ prime(z) ∧ (x ≈ y+ z)
))
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Other Number Systems

Our first–order language L = {+, ·, <,0,1}

can just as easily be used to study other

number systems, in particular,

• the integers Z = (Z,+, ·, <,0,1),

• the rationals Q = (Q,+, ·, <,0,1),

• and the reals R = (R,+, ·, <,0,1).

However, first–order sentences that are true

in one can be false in another.
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Example

Consider the following first–order sentences:

a. ∀x∃y (x < y)

b. ∀y∃x (x < y)

c. ∀x∀y

(

(x < y)→ ∃z
(

(x < z) ∧ (z < y)
))

d. ∀x∃y
(

(0 < x)→ (x ≈ y · y)
)

e. ∃x∀y (x < y).
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Then we have

N Z Q R

a. true true true true

b. false true true true

c. false false true true

d. false false false true

e. false false false false

We arrive at the simple conclusion that the

notion of truth depends on the structure

being considered!
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First–Order Syntax for (Directed) graphs

The first–order language of (directed) graphs

is L = {r}, where r is a binary relation

symbol.

The only terms are the variables x.

Atomic formulas look like (x ≈ y) or (rxy).

Example

The subformulas of ∀x ((rxy)→ ∃y (ryx))

are

∀x ((rxy)→ ∃y (ryx))

(rxy)→ ∃y (ryx)

rxy

∃y (ryx)

ryx.
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First–Order to English

d
b

a

c

e d

a

Graph  A Graph  B
c

b

b. ∀x¬ (rxx)

says “the (directed) graph is irreflexive.”

False for Graph A, true for Graph B.

c. ∀x∀y
(

(rxy)→ (ryx)
)

says “the (directed) graph is symmetric.”

False for Graph A, true for Graph B.
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d
b

a

c

e d

a

Graph  A Graph  B
c

b

e. ∀x∀y (rxy)

says “all possible edges are present.”

False for both examples.

f. ∀x∃y (rxy)

says “for every vertex x there is an edge

going from x to some vertex y.”

True for both examples.
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English to First-Order

a. The (directed) graph has at least two

vertices.

∃x∃y (¬ (x ≈ y)) .

b. Every vertex has an edge attached to it.

∀x∃y
(

(rxy) ∨ (ryx)
)

.

c. Every vertex has at most two edges

directed from it to other vertices.

∀x∀y∀z∀w

((

(rxy) ∧ (rxz) ∧ (rxw)
)

→

(

(y ≈ z) ∨ (y ≈ w) ∨ (w ≈ z)
))

.
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Statements About Graphs

• The degree of a vertex is the number of

(undirected) edges attached to it.

• A path of length n from vertex x to

vertex y is a sequence of vertices

a1, . . . , an+1 with each (ai, ai+1) being an

edge, and with x = a1, y = an+1.

• Two vertices are adjacent if there is an

edge connecting them.
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Some Definable Relations

a. The degree of x is at least one.

∃y (rxy)

b. The degree of x is at least two.

∃y∃z (¬ (y ≈ z) ∧ (rxy) ∧ (rxz))

Statements About Graphs

a. Some vertex has degree at least two.

∃x∃y∃z
(

¬ (y ≈ z) ∧ (rxy) ∧ (rxz)
)

b. Every vertex has degree at least two.

∀x∃y∃z
(

¬ (y ≈ z) ∧ (rxy) ∧ (rxz)
)
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Semantics for First–Order Logic

Given a first–order L–structure S = (S, I),

the interpretation I gives meaning to the

symbols of the language L.

We associate with each term t(x1, · · · , xn)

the n–ary term function tS.

We associate with each formula F(x1, · · · , xn)

an n–ary relation FS ⊆ Sn:

[The superscript S is omitted in the

following for ease of reading.]
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• F(~x) is atomic:

F is t1(~x ) ≈ t2(~x ) :

F(~a) holds iff t1(~a) = t2(~a)

F is rt1(~x) · · · tn(~x)

F(~a) holds iff r(t1(~a), . . . , tn(~a)) holds.

• F is ¬G

Then F(~a ) holds iff G(~a) does not hold.
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• F is G ∨ H

Then F(~a ) holds iff G(~a ) or H(~a ) holds.

• F is G ∧ H

Then F(~a ) holds iff G(~a ) and H(~a ) holds.

• F is G → H

Then F(~a ) holds iff G(~a ) does not hold, or

H(~a ) holds.
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• F is G ↔ H

Then F(~a ) holds iff both or neither of G(~a )

and H(~a ) holds.

• F(~x) is ∀y G(y, ~x)

Then F(~a ) holds iff G(b,~a ) holds for every

b ∈ S.

• F(~x) is ∃y G(y, ~x)

Then F(~a ) holds iff G(b,~a ) holds for some

b ∈ S.
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Example

S = {a, b}
r a b

a 0 1
b 1 0

f

a b

b a

F(x) = ∀y∃z ((rfxfy) ∧ (rfyfz)).

FS =? Let

H1(x, y, z) = rfxfy

H2(x, y, z) = rfyfz

H(x, y, z) = H1(x, y, z) ∧ H2(x, y, z)

G(x, y) = ∃z H(x, y, z)

F(x) = ∀y G(x, y).
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Then

x y z fx fy fz H1(x, y, z) H2(x, y, z) H(x, y, z)

a a a b b b 0 0 0

a a b b b a 0 1 0

a b a b a b 1 1 1

a b b b a a 1 0 0

b a a a b b 1 0 0

b a b a b a 1 1 1

b b a a a b 0 1 0

b b b a a a 0 0 0

x y G(x, y)

a a 0

a b 1

b a 1

b b 0

x F(x)

a 0

b 0
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S = {a, b}
r a b

a 0 1
b 1 0

f

a b

b a

F(x, y) = ∃z ((rxfz) ∧ (fy ≈ z))→ (fy ≈ fx).

FS =? Let

G1(x, y, z) = rxfz

G2(x, y, z) = fy ≈ z

G(x, y, z) = G1(x, y, z) ∧ G2(x, y, z)

F1(x, y) = ∃z G(x, y, z)

F2(x, y) = fy ≈ fx

F(x, y) = F1(x, y)→ F2(x, y).
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Then

x y z fx fy fz G1(x, y, z) G2(x, y, z) G(x, y, z)

a a a b b b 1 0 0

a a b b b a 0 1 0

a b a b a b 1 1 1

a b b b a a 0 0 0

b a a a b b 0 0 0

b a b a b a 1 1 1

b b a a a b 0 1 0

b b b a a a 1 0 0

so

x y F1(x, y) F2(x, y) F(x, y)

a a 0 1 1

a b 1 0 0

b a 1 0 0

b b 0 1 1
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Let F be a sentence and S a structure.

Then F is true in S provided one of the

following holds:

• F is rt1 · · · tn and rS(tS1, . . . , t
S
n) holds;

• F is t1 ≈ t2 and tS1 = tS2;

• F is ¬G and G is not true in S;

• F is G ∨ H and at least one of G, H is

true in S;
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• F is G ∧ H and both of G, H are true

in S;

• F is G → H and G is not true in S or

H is true in S;

• F is G ↔ H and both or neither of G, H

is true in S;

• F is ∀xG(x) and GS(a) is true for every

a ∈ S;

• F is ∃xG(x) and GS(a) is true for some

a ∈ S.

If F is not true in S, then we say F is false

in S.
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Given a first–order language L, let F be a

sentence, S a set of sentences, and S a

structure for this language.

• S |= F means F is true in S.

• F is valid if it is true in all L–structures.

• S |= S means every sentence F in S is

true in S.

• Sat(S) means S is satisfiable.

• S |= F means every model of S is a

model of F. We say F is a consequence of

S.
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The Propositional Skeleton

(A simple test for having a one–element

model.)

The propositional skeleton, Skel(F) , of a

formula is defined as follows:

• Delete all quantifiers and terms.

• Replace ≈ with 1.

• Replace the relation symbols r with

propositional variables R.
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Theorem

F has a one–element model iff Skel(F) is

satisfiable.

If Skel(F) is satisfiable, then choose an

evaluation e that makes it true.

Let rS(a, . . . , a) hold iff e(R) = 1 for r ∈ R.

Let fS(a, ..., a) = a for f ∈ F.
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To illustrate this, we consider the first–order

sentence F given by

∀x∀y (¬ (x < y)↔ ∃z ((x < z) ∨ (fz ≈ y))).

Then Skel(F) is the propositional formula

¬P ↔ P ∨ 1

This is satisfiable by evaluating P as 0, so

F has a one–element model on the set {a},

namely

< a

a 0
, and fa = a
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Equivalent Sentences

The sentences F and G are equivalent,

written F ∼ G , if they are true of the same

L–structures S,

that is, for all structures S we have

S |= F iff S |= G.

∀x (¬ (x ≈ 0)→ ∃y (x · y ≈ 1))

and

∀x∃y (¬ (x ≈ 0)→ (x · y ≈ 1))

are equivalent.

Proposition

The sentences F and G are equivalent iff

F ↔ G is a valid sentence.
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Equivalent Formulas

Two formulas F(x1, . . . , xn) and

G(x1, . . . , xn) are equivalent, written

F(x1, . . . , xn) ∼ G(x1, . . . , xn) ,

iff F and G define the same relation on any

L–structure S, that is, FS = GS.

¬ (x ≈ 0)→ ∃y (x · y ≈ 1)

and

∃y (¬ (x ≈ 0)→ (x · y ≈ 1))

are equivalent.
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Proposition

The formulas F(~x) and G(~x) are equivalent

iff ∀~x(F(~x)↔ G(~x)) is a valid sentence.

Proposition

The relation ∼ is an equivalence relation on

sentences as well as on formulas.

This is immediate from the definition of ∼

and the fact that ordinary equality (=) is an

equivalence relation.
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Fundamental Equivalences

¬∃x F ∼ ∀x (¬ F)

¬∀x F ∼ ∃x (¬ F)

(∀x F) ∨ G ∼ ∀x (F ∨ G) if x is not free in G

(∃x F) ∨ G ∼ ∃x (F ∨ G) if x is not free in G

(∀x F) ∧ G ∼ ∀x (F ∧ G) if x is not free in G

(∃x F) ∧ G ∼ ∃x (F ∧ G) if x is not free in G

(∀x F)→ G ∼ ∃x (F → G) if x is not free in G

(∃x F)→ G ∼ ∀x (F → G) if x is not free in G

F → (∀xG) ∼ ∀x (F → G) if x is not free in F

F → (∃xG) ∼ ∃x (F → G) if x is not free in F

∀x (F ∧ G) ∼ (∀x F) ∧ (∀xG)

∃x (F ∨ G) ∼ (∃x F) ∨ (∃xG)
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Notes on the Fundamental Equivalences

The first two, combined with the

fundamental laws from propositional logic, are

very useful in practice, e.g., the statement

f is continuous at x:

∀ε((ε > 0)→ ∃δ((δ > 0) ∧ ∀y(|x− y| < δ → |fx− fy| < ε))),

negates to

f is not continuous at x:

∃ε((ε > 0) ∧ ∀δ((δ > 0)→ ∃y((|x− y| < δ) ∧ ¬ (|fx− fy| < ε))))
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Comment

If x occurs free in G then we cannot

conclude

(∀x F) ∨ G ∼ ∀x (F ∨ G),

for example,

(∀x(x < 0)) ∨ (0 < x) and ∀x((x < 0) ∨ (0 < x))

are not equivalent, for in the natural numbers

the first is true of positive numbers x,

whereas the second is false in the natural

numbers.
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For implication we have:

(∀x F)→ G ∼ ¬ (∀x F) ∨ G

∼ ∃x (¬ F) ∨ G

∼ ∃x (¬ F ∨ G)

∼ ∃x (F → G)

To see that ∀x (F ∨ G) ∼ (∀x F) ∨ (∀xG)

need not be true consider the following

example:

∀x ((0 ≈ x) ∨ (0 < x)) and (∀x (0 ≈ x)) ∨ (∀x (0 < x))

And to see that ∃x (F ∧ G) ∼ (∃x F) ∧ (∃xG)

need not be true consider the example:

∃x ((0 ≈ x) ∧ (0 < x)) and (∃x (0 ≈ x)) ∧ (∃x (0 < x))
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Replacement and Substitution

Equivalent propositional formulas lead to

equivalent first–order formulas as follows.

If F(P1, . . . , Pn) and G(P1, . . . , Pn) are

equivalent propositional formulas, then for

any sequence H1, . . . ,Hn of first–order

formulas we have

F(H1, . . . ,Hn) ∼ G(H1, . . . ,Hn)

Example ¬ (P ∧Q) ∼ ¬P ∨ ¬Q holds, so

we have, in first–order logic,

¬
(

(∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x))
)

∼ ¬
(

∃x(x · x ≈ 1)
)

∨ ¬
(

∀x∀y(x · y ≈ y · x)
)
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Equivalence is compatible with our

connectives and quantifiers in the obvious

sense.

Lemma

Suppose F1 ∼ G1 and F2 ∼ G2. Then

¬ F1 ∼ ¬G1

F1 ∨ F2 ∼ G1 ∨ G2

F1 ∧ F2 ∼ G1 ∧ G2

F1 → F2 ∼ G1 → G2

F1 ↔ F2 ∼ G1 ↔ G2

∀x F1 ∼ ∀xG1

∃x F1 ∼ ∃xG1.
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This leads us to the basic replacement

theorem for first–order logic.

Replacement Theorem

If F ∼ G then H(· · · F · · · ) ∼ H(· · ·G · · · ) .

Example

Since

¬
(

(∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x))
)

∼ ¬
(

∃x(x · x ≈ 1)
)

∨ ¬
(

∀x∀y(x · y ≈ y · x)
)

we have

(∀x∃y(x < y))→ ¬
(

(∃x(x · x ≈ 1)) ∧ (∀x∀y(x · y ≈ y · x))
)

∼ (∀x∃y(x < y))→ ¬
(

∃x(x · x ≈ 1)
)

∨ ¬
(

∀x∀y(x · y ≈ y · x)
)
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Substitution in first-order logic often requires

the need to rename variables.

We need to be careful with renaming

variables to avoid binding any newly

introduced occurrences of variables.

Given a first–order formula F, define a

conjugate of F to be any formula F

obtained by renaming the occurrences of

bound variables of F so that no free

occurrences of variables in F become bound.

Keep bound occurrences of distinct variables

distinct.
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Conjugates are equivalent:

If F is a conjugate of F, then F ∼ F.

Thus ∃y(x · y ≈ 1) ∼ ∃w(x · w ≈ 1).

Substitution Theorem

If

F(x1, . . . , xn) ∼ G(x1, . . . , xn)

and t1, . . . , tn are terms, then

F?(t1, . . . , tn) ∼ G?(t1, . . . , tn).

Thus from

¬∃y(x · y ≈ 1) ∼ ∀y(¬(x · y ≈ 1))

follows

¬∃u((y+ w) · u ≈ 1) ∼ ∀u(¬((y+ w) · u ≈ 1))
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Prenex Form

A formula F is in prenex form if it looks like

Q1x1 · · ·Qnxn G

where the Qi are quantifiers and G has no

occurrences of quantifiers.

A formula with no occurrences of quantifiers

is called an open formula.

The formula

∃x
(

(rxy)→ ∀u (ruy)
)

is not in prenex form, but it is equivalent to

the prenex form formula

∃x∀u
(

(rxy)→ (ruy)
)

.
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Theorem

Every formula is equivalent to a formula in

prenex form.

The following steps put F in prenex form:

• Rename the quantified variables so that

distinct occurrences of quantifiers bind

distinct variables, and

no free variable is equal to a bound

variable
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Thus change

∀z((rzy)→ ¬∀y((rxy) ∧ ∃y(ryx)))

to

∀z((rzy)→ ¬∀u((rxu) ∧ ∃w(rwx)))

• Eliminate all occurrences of → and ↔

using

G ↔ H ∼ (¬G ∨ H) ∧ (¬H ∨ G)

G → H ∼ ¬G ∨ H

The above example becomes

∀z(¬ (rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)))
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• Pull the quantifiers to the front by repeated

use of the following

¬ (F ∨ G) ∼ (¬ F ∧ ¬G)

¬ (F ∧ G) ∼ (¬ F ∨ ¬G)

G ∨ (∀xH) ∼ ∀x (G ∨ H)

G ∨ (∃xH) ∼ ∃x (G ∨ H)

G ∧ (∀xH) ∼ ∀x (G ∧ H)

G ∧ (∃xH) ∼ ∃x (G ∧ H)

(∀xG) ∨ H ∼ ∀x (G ∨ H)

(∃xG) ∨ H ∼ ∃x (G ∨ H)

(∀xG) ∧ H ∼ ∀x (G ∧ H)

(∃xG) ∧ H ∼ ∃x (G ∧ H)

¬∃xG ∼ ∀x¬G

¬∀xG ∼ ∃x¬G
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Applying these steps to

∀z(¬ (rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)))

gives

∀z(¬ (rzy) ∨ ¬∀u((rxu) ∧ ∃w(rwx)))

↓

∀z(¬ (rzy) ∨ ∃u(¬ ((rxu) ∧ ∃w(rwx))))

↓

∀z∃u(¬ (rzy) ∨ ¬ ((rxu) ∧ ∃w(rwx)))

↓

∀z∃u(¬ (rzy) ∨ (¬ (rxu) ∨ ¬(∃w(rwx))))

↓

∀z∃u(¬ (rzy) ∨ (¬ (rxu) ∨ ∀w(¬(rwx))))

↓

∀z∃u(¬ (rzy) ∨ ∀w(¬ (rxu) ∨ (¬(rwx))))

↓

∀z∃u∀w(¬ (rzy) ∨ (¬ (rxu) ∨ (¬(rwx))))
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Valid Arguments

Now we are working with sentences in a

fixed first–order language L.

An argument F1, · · · , Fn ∴ F is valid

(or correct) in first–order logic provided

every structure S that makes F1, . . . , Fn true

also makes F true, that is, for all S

S |= {F1, . . . , Fn} implies S |= F.
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Proposition

An argument

F1, · · · , Fn ∴ F

in first–order logic is valid iff

F1 ∧ · · · ∧ Fn → F

is a valid sentence; and this holds iff

{F1, · · · Fn, ¬ F}

is not satisfiable.
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Example

The work in Chapter 3 concerned equations.

In first-order logic we treat equations as

universally quantified sentences:

∀~x(s(~x) ≈ t(~x))

The argument

∀x∀y∀u∀v (x · y ≈ u · v)

∴ ∀x∀y∀z ((x · y) · z ≈ x · (y · z))

is valid.

This is evident by considering that if a

structure S satisfies the premiss then all

multiplications give the same value. But then

the multiplication must be associative.
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The argument
∃y∀x (rxy)
∴ ∀x∃y (rxy)

is valid.

To see this suppose S is a structure

satisfying the premiss. Then choose an

element a from S such that ∀x (rxa) holds.

From this we can conclude that ∀x∃y (rxy)

also holds since we can let y be a.

We have demonstrated the validity of the

above arguments by appealing to our

reasoning skills in mathematics.

It is fair to ask if one can now sit down and

write out all the axioms and rules that one

would ever need to justify valid arguments in

first-order logic.
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This question was posed by Hilbert and

Ackerman in 1928 in their slender book, the

elementary and famous Principles of Logic.

They proposed a collection of first-order

axioms and rules of inference, and noted that

they were correct rules of reasoning.

But were they enough, that is, was their

system complete?

They said in their book that their proof

system was sufficient for doing all the things

they tried with first-order logic, and indeed

asked if it was complete.



(LMCS) V.71

The brilliant young student Kurt Gödel in

Vienna answered their question within a year,

in the affirmitive, and used it for his PhD

Thesis.

This is the famous Gödel Completeness

Theorem, discussed in Chapter 6 of the text.

It says

S |= ϕ iff S ` ϕ.

Another question that was prominent at the

time was whether or not the powerful logical

system of Principia Mathematica,

developed by Whitehead and Russell in 3

volumes (1910-1913), was powerful enough

to do all mathematics, forever.
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This system of logic was higher-order,

meaning that one could quantify over things

other than just the variables for the elements

of the universe. One could also quantify over

relation symbols (and function symbols).

Thus they could write ∀r(rx↔ ry) as a

definition of x ≈ y.

It was known, from looking at the examples

in Principia, that all known mathematical

proofs could be written up in this system (if

one so desired).

So perhaps this is all one would ever need.

Within a year of his PhD Gödel had answered

this (much more difficult) question as well.
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To everyones astonishment he put together a

(lowly) first-order sentence F in the

language of the natural numbers

N = {N,+, ·, <,0,1} that he could show was

• True of N

• But Principia Mathematica was not strong

enough to prove it.

(Assuming that the proof system of Principia

did not lead to a contradiction G ∧ ¬G, for

then one could derive every formula!)

This is the famous Gödel Incompleteness

Theorem.
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Counterexamples

To show that an argument F1, · · · , Fn ∴ F is

not valid it suffices to find a single structure

S such that

• each of the premisses F1, · · · , Fn is true in

S, but

• the conclusion F is false in S.

Such a structure S is a counterexample to

the argument.

The argument
∀x∃y (rxy)
∴ ∃y∀x (rxy) is not valid;

a two–element graph gives a counterexample:

a b
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Skolemization

Skolem, following the work of Löwenheim

(1915), gave us a technique to convert a

first-order sentence F into a sentence F′ in

prenex form, with only universal quantifiers,

such that

F is satisfiable iff F′ is satisfiable.

Universally quantified sentences are

apparently much easier to understand.

This has provided one of the powerful

techniques in automated theorem proving.
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• One takes a given assertion in mathematics

and expresses it as a first-order sentence F.

This means we want the assertion to be true

iff F is valid (i.e., true in all structures).

• This sentence F is valid iff ¬ F is not

satisfiable.

• One replaces ¬ F by a universal sentence

F′ obtained by Skolem’s process.

• Then F is valid iff F′ is not satisfiable.

• One puts the matrix of F′ in conjunctive

form.
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• Then it is easy to replace F′ by a finite

set of clauses C′ such that F′ is not

satisfiable iff C′ is not satisfiable.

Namely the clauses come from the conjuncts

of the matrix of F′.

• Now one has F is valid iff C′ is not

satisfiable.

To show C′ is not satisfiable one can apply

resolution theorem proving.

Now we look at the details of Skolem’s

process, called skolemization.
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Lemma

• Given the sentence ∃y G(y),

augment the language with a new constant

c and form the sentence G(c). Then

Sat
(

∃y G(y)
)

iff Sat
(

G(c)
)

.

• Given the sentence ∀x1 · · · ∀xn∃y G(~x, y),

augment the language with a new n–ary

function symbol f and form the sentence

∀x1 · · · ∀xn G?(~x, f(~x)). Then

Sat
(

∀~x∃y G(~x, y)
)

iff Sat
(

∀~xG?(~x, f(~x))
)

.
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Proof

In each step we can expand a model of the

sentence on the left–hand side to one on the

right–hand side by adding the appropriately

designated element for the constant, or by

adding an appropriate function f .

Conversely, we can take a model of the

sentence on the right–hand side and remove

the constant symbol, respectively function

symbol, and get a model for the left–hand

side.
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Definition

A first–order formula F is universal if it is in

prenex form and all quantifiers are universal,

that is, F is of the form ∀~xG , where G is

quantifier–free.

G is called the matrix of F.

Example

∀x∀y∀z ((x ≤ y) ∧ (y ≤ z)→ (x ≤ z))
︸ ︷︷ ︸

matrix
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Theorem

Given a first–order sentence F, there is an

effective procedure for finding a universal

sentence F′ (usually in an extended

language) such that

Sat(F) iff Sat(F′).

Furthermore, we can choose F′ such that

every model of F can be expanded to a

model of F′, and every model of F′ can be

reducted to a model of F.

Proof

First, we put F in prenex form. Then we

just apply the Lemma repeatedly until there

are no existential quantifiers.
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The process of converting a sentence to such

a universal sentence is called skolemizing.

The new constants and functions are called

skolem constants and skolem functions.

Example

To skolemize the sentence

F = ∀x∀y ((x < y)→ ∃z ((x < z) ∧ (z < y)))

we first put it in prenex form

F = ∀x∀y∃z ((x < y)→ (x < z) ∧ (z < y))
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Applying the Lemma, we introduce a new

binary function symbol, say f , and arrive at

the universal sentence

F′ = ∀x∀y ((x < y)→ (x < f(x, y)) ∧ (f(x, y) < y))

The structure Q = (Q,<), consisting of the

real numbers with the usual <, satisfies F.

If we choose f(a, b) = a+b
2 for a, b ∈ Q, we

see that the expansion (Q,<, f) of Q

satisfies F′.

Now we extend these ideas to sets of

sentences.
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Theorem

Given a set of first–order sentences S, there

is a set S ′ of universal sentences (usually in

an extended language) such that

Sat(S) iff Sat(S ′).

Furthermore, every model of S can be

expanded to a model of S ′, and every model

of S ′ can be reducted to a model of S.

Proof

We skolemize each sentence in S as before,

making sure that distinct sentences do not

have any common skolem constants or

functions.
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This theorem is at the heart of the

translation from first–order logic to clause

logic, as we shall see in the next section.

Example

We skolemize the set of sentences

{∃x∀y∃z (x < y+ z), ∃x∀y∃z (¬ (x < y+ z))}

and obtain a set of universal sentences

{∀y (a < y+ fy), ∀x (¬ (b < y+ gy))}.
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The Reduction of First-Order Logic to

Clause Logic

Now we show that first–order formulas can be

reduced to the predicate clause logic, and

thus to the propositional clause logic.

First we want to look at some basic

translations between clauses and first–order

formulas. A clause

C = {L1(~x), . . . , Lk(~x)}

is considered as the universal sentence

FC = ∀~x (L1(~x) ∨ · · · ∨ Lk(~x))

in first-order logic.
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For indeed

S |= C iff S |= FC.

There is also a translation from universal

first–order sentences to clauses.

Lemma

One can effectively construct, for any given

universal sentence F, a finite set CF of

clauses such that for any structure S

S |= F iff S |= CF .
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Proof

Let F be ∀~xG(~x) with G(~x)

quantifier–free. Put G(~x) in conjunctive form

G(~x) ∼ G1(~x) ∧ · · · ∧ Gk(~x),

where each Gi(~x) is a disjunction of literals.

Then

∀~xG(~x) ∼ ∀~x (G1(~x) ∧ · · · ∧ Gk(~x))

∼ F1 ∧ · · · ∧ Fk

where Fi = ∀~xGi(~x). Thus

S |= F iff S |= {F1, · · · , Fk}.

Let Ci be the clause CFi
associated with

the matrix of Fi. Then

S |= F iff S |= CF
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Example

Let

F = ∀x∀y∀z (rx → ry ∧ rz).

First, we put the matrix of F in conjunctive

form:

rx → ry ∧ rz ∼ ¬ rx ∨ (ry ∧ rz)

∼ (¬ rx ∨ ry) ∧ (¬ rx ∨ rz).

Now we can read off the clauses from the

conjuncts, namely,

CF = { {¬ rx, ry}, {¬ rx, rz} } .
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Definition For S a set of universal

sentences let

CS =
⋃

F∈S

CF,

the union of the collection of all sets CF of

clauses obtained from the universal sentences

F in S.

Lemma Given a set S of universal

sentences and S a structure,

S |= S iff S |= CS.

Thus

Sat(S) iff Sat(CS).
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Now we can formulate a connection between

satisfiability of a set of first–order sentences

(not necessarily universal) and a set of

clauses.

Lemma

Given a set S of first–order sentences, let

S ′ be a skolemization of S. Then

Sat(S) iff Sat(CS ′).
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Example

For S = {∃x∀y (rxy), ¬∀y∃x (rxy)} we have

S ′ = {∀y (ray), ∀x¬ (rxb)}

C′S = {{ray}, {¬ rxb}}.

We can easily derive the empty clause from

C′S (in one resolution step), so C′S is not

satisfiable. Thus S is also not satisfiable.

Consequently, the sentence

F = (∃x∀y (rxy)) ∧ (¬∀y∃x (rxy)),

obtained by conjuncting the members of S,

is not satisfiable.

So ¬ F is a valid sentence. Clearly

¬ F ∼ (∃x∀y (rxy)) → (∀y∃x (rxy))
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Now we can state the fundamental

transformation from first–order logic to

clause logic.

Theorem

Given S, a set of sentences, and F, a

sentence,

S |= F iff ¬Sat( CS(¬ F)′ ),

where S(¬ F) is the set S ∪ {¬ F}, and the

prime symbol refers to taking the

skolemization, as before.

Thus the argument S ∴ F is valid iff one

cannot satisfy the set CS(¬ F)′ of clauses.
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Example

∀x∀y
(

(rxy)→ ¬ (ryx)
)

∀x∀y∀z

((

(rxy) ∧ (ryz)
)

→ (rxz)

)

∴ ∀x∀y (rxy → ¬ (x ≈ y)).

Let F be the conclusion. Then

¬ F ∼ ∃x∃y (rxy ∧ (x ≈ y)).

The premisses S are already skolemized, as

they are universal sentences. For ¬ F we

obtain the skolemized form

(rab) ∧ (a ≈ b).

Thus the set of clauses corresponding to the

argument is

{¬ rxy, ¬ ryx}

{¬ rxy, ¬ ryz, rxz}

{rab}, {a ≈ b}
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We can also handle equational arguments.

Example

Consider the argument

∀x (x · 1 ≈ x)

∀x∃y (x · y ≈ 1)

∀x∀y∀z
(

(x · y) · z ≈ x · (y · z)
)

∴ ∀x (1 · x ≈ x).

The negation of the conclusion is the formula

∃x (¬ (1 · x ≈ x)).



(LMCS, p. 360) V.96

Thus skolemizing the premisses with the

negated conclusion gives

∀x (x · 1 ≈ x)

∀x (x · fx ≈ 1)

∀x∀y∀z
(

(x · y) · z ≈ x · (y · z)
)

¬ (1 · a ≈ a)

These are ready to be converted to clauses,

giving

{x · 1 ≈ x}

{x · fx ≈ 1}

{(x · y) · z ≈ x · (y · z)}

{¬ (1 · a ≈ a)}
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We can convert

{x · 1 ≈ x}

{x · fx ≈ 1}

{(x · y) · z ≈ x · (y · z)}

{¬ (1 · a ≈ a)}

into a set of clauses without equality:

{x ≡ x}

{x 6≡ y, y ≡ x}

{x 6≡ y, y 6≡ z, x ≡ z}

{x 6≡ y, fx ≡ fy}

{x1 6≡ y1, x2 6≡ y2, x1 · x2 ≡ y1 · y2}

{x · 1 ≡ x}

{x · fx ≡ 1}

{(x · y) · z ≡ x · (y · z)}

{1 · a 6≡ a}

Now we are ready to apply resolution theorem

proving. (Go to Chapter 4!)


