First-Order Languages without Equality

A first-order language without equality \mathcal{L} will consist of

- a set \mathcal{F} of function symbols f, g, h, \cdots with associated arities;
- a set \mathcal{R} of relation symbols r, r_{1}, r_{2}, \ldots with associated arities;
- a set \mathcal{C} of constant symbols $c, d, e \cdots$;
- a set X of variables x, y, z, \cdots.

Each relation symbol r has a positive integer, called its arity, assigned to it.

If the number is n, we say r is \mathbf{n}-ary.

For small n we use the same special names that we use for function symbols:
unary, binary, ternary.

The set $\mathcal{L}=\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ is called a first-order language.
$\{+, \cdot,<,-, 0,1\}$ would be a natural choice of first-order language when working with the integers.

Interpretations and Structures

The obvious interpretation of a relation symbol is as a relation on a set.

If A is a set and n is a positive integer, then an \mathbf{n}-ary relation r on A is a subset of A^{n},
that is, r consists of a collection of n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ of elements of A.

An interpretation I of the first-order language \mathcal{L} on a set S is a mapping with domain \mathcal{L} such that

- $I(c)$ is an element of S for each constant symbol c in \mathcal{C};
- $I(f)$ is an n-ary function on S for each n-ary function symbol f in \mathcal{F};
- $I(r)$ is an n-ary relation on S for each n-ary relation symbol r in \mathcal{R}.

An \mathcal{L}-structure \mathbf{S} is a pair (S, I), where I is an interpretation of \mathcal{L} on S.

Preferred notation

We prefer to write

$$
\begin{array}{llll}
c^{\mathrm{S}} & \text { (or just } c \text {) } & \text { for } I(c) \\
f^{\mathrm{S}} & \text { (or just } f \text {) } & \text { for } I(f) \\
r^{\mathrm{S}} & (\text { or just } r \text {) } & \text { for } I(r) \\
& (S, \mathcal{F}, \mathcal{R}, \mathcal{C}) & \text { for }(S, I)
\end{array}
$$

Example

The structure $(R,+, \cdot,<, 0,1)$, the reals with addition, multiplication, less than, and two specified constants has:

$$
\mathcal{F}=\{+, \cdot\} \quad \mathcal{R}=\{<\} \quad \mathcal{C}=\{0,1\}
$$

(LMCS, p. 263)
IV. 6

If $r \in \mathcal{R}$ is a unary predicate symbol,
then in any \mathcal{L}-structure \mathbf{S},
the relation r^{S} is a subset of S.

We can picture this as:

If \mathcal{L} consists of a single binary relation symbol r,
then we call an \mathcal{L}-structure a directed graph.

A small finite directed graph can be conveniently described in three different ways:

- List the ordered pairs in the relation r.

A simple example with $S=\{a, b, c\}$ is

$$
r=\{(a, a),(a, b),(b, c),(c, b),(c, a)\} .
$$

- Use a table. For the same example we have

r	a	b	c
a	1	1	0
b	0	0	1
c	1	1	0

(An entry of $\mathbf{1}$ in the table indicates a pair is in the relation.)

- Draw a picture. Again, using the same example:

Example

An interpretation of a language on a small set can be conveniently given by tables.

Let $\mathcal{L}=\{+,<\}$
where + and $<$ are binary.

The following tables give an interpretation of \mathcal{L} on the two-element set $S=\{a, b\}$:

$$
\begin{array}{c|cc}
+ & a & b \\
\hline a & a & b \\
b & b & a
\end{array}
$$

$<$	a	b
a	0	1
b	0	0

(LMCS, p. 264-265)
IV. 10

A clause in the predicate logic uses atomic formulas instead of propositional variables.

- An atomic formula A is an expression

$$
r t_{1} \cdots t_{n}
$$

where the t_{i} are terms, and r is an n-ary relation symbol.

Examples of atomic formulas:

$$
x<y \quad(x+y)<(x \cdot y) \quad r f x g y 0
$$

where r and g are binary, f is unary.
(LMCS, p. 264-265)

Literals

- A literal is either
an atomic formula A or a negated atomic formula $\neg \mathrm{A}$

Examples of literals

$$
x<y \quad \neg((x+y)<(y \cdot z)) \quad \neg r f x g x y
$$

An atomic formula is a positive literal.

A negated atomic formula is a negative literal.
(LMCS, p. 264-265)

Clauses

- A clause C is a finite set of literals

$$
\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}\right\} .
$$

We also use the notation

$$
\mathrm{L}_{1} \vee \cdots \vee \mathrm{~L}_{n}
$$

Examples of clauses:

$$
\begin{aligned}
& \{\neg(x<y), \neg(y<z), \neg(x<z)\} \\
& \{r x x, \operatorname{rxg} 1 y, \neg r f x g y z\}
\end{aligned}
$$

(LMCS, p. 265-266)
IV. 13

The parsing algorithm for atomic formulas.

Example

r a binary relation symbol
f a unary function symbol
g a binary function symbol
c a constant symbol

Is rgxfyfc an atomic formula?

If so find the two subterms t_{1}, t_{2} such that $r t_{1} t_{2}=r g x f y f c$.

i	0	1	2	3	4	5	6
s_{i}	r	g	x	f	y	f	c
γ_{i}	0	-1	0	0	1	1	2
							(\quad)

Semantics

Given a first-order structure S which tuples of elements a_{1}, \ldots, a_{n} make a literal $\mathrm{L}\left(x_{1}, \ldots, x_{n}\right)$ true?

If \vec{a} is such a tuple for the literal L we say

- $\mathrm{L}(\vec{a})$ holds (is true) in S
- S satisfies (models) $\mathrm{L}(\vec{a})$
and write $\mathbf{S} \vDash \mathrm{L}(\vec{a})$.
(For clauses C we have parallel concepts.)
(LMCS, p. 267-268)

The set of tuples from \mathbf{S} that make $\mathrm{L}\left(x_{1}, \ldots, x_{n}\right)$ true
form an \mathbf{n}-ary relation that we call L^{S}.

The set of tuples from S that make $C\left(x_{1}, \ldots, x_{n}\right)$ true
form an \mathbf{n}-ary relation that we call C^{S}.

Example

Let S be given by the tables:

f	a	b				
a	a	a				
b	a	b	\quad	r	a	b
:---:	:---:	:---:				
a	0	1				
b	0	0				

Let $\mathrm{L}_{1}=r f x y f x x, \quad \mathrm{~L}_{2}=\neg r f x y x, \quad \mathrm{C}=$ $\left\{L_{1}, L_{2}\right\}$.

A combined table for L_{1}, L_{2}, C is

				L_{1}		$\mathrm{~L}_{2}$	C
x	y	$f x y$	$f x x$	$r f x y f x x$	$r f x y x$	$\neg r f x y x$	$\{r f x y f x x, \neg r f x y x\}$
a	a	a	a	0	0	1	1
a	b	a	a	0	0	1	1
b	a	a	b	1	1	0	1
b	b	b	b	0	0	1	1

Satisfiability

$$
\mathbf{S} \equiv \mathrm{L}\left(x_{1}, \ldots, x_{n}\right)
$$

if for every \vec{a} from S we have $\mathrm{L}(\vec{a})$ holds in S .

$$
\mathbf{S} \equiv \mathrm{C}\left(x_{1}, \ldots, x_{n}\right)
$$

if for every choice of \vec{a} from S we have $C(\vec{a})$ holds in \mathbf{S}.

For \mathcal{S} a set of clauses, we say

$$
\mathrm{S} \vDash \mathcal{S}
$$

provided S satisfies every clause C in \mathcal{S}.

We say $\operatorname{Sat}(\mathcal{S})$, or \mathcal{S} is satisfiable, if there is a structure S such that $\mathrm{S} \models \mathcal{S}$.

If this is not the case, we say $\neg \operatorname{Sat}(\mathcal{S})$, meaning \mathcal{S} is not satisfiable.

Predicate clause logic, like propositional clause logic, revolves around the study of not satisfiable

Example

Given two unary relation symbols r_{1}, r_{2},

$$
\left\{\neg r_{1} x, \neg r_{2} x\right\}
$$

is satisfied by a structure S iff
for $a \in S$ either $\neg r_{1} a$ or $\neg r_{2} a$ holds,
and this is the case iff the sets r_{1} and r_{2} are disjoint, that is, $r_{1} \cap r_{2}=\varnothing$.

We can picture this situation as follows:

Example

Given two unary relation symbols r_{1}, r_{2},

$$
\left\{\neg r_{1} x, r_{2} x\right\}
$$

is satisfied by a structure S iff
the set r_{1} is a subset of r_{2}.

We can picture this situation as follows:

Example

Let S be a directed graph, with $\mathcal{L}=\{r\}$.

- S will satisfy the clause $\{r x x\}$
iff the binary relation r is reflexive.
- S will satisfy the clause $\{\neg r x x\}$
iff the binary relation r is irreflexive.
- S will satisfy the clause $\{\neg r x y, r y x\}$
iff the binary relation r is symmetric.
- S will satisfy the clause

$$
\{\neg r x y, \neg r y z, r x z\} \quad \text { iff the binary relation } r
$$

is transitive

- A graph is an irreflexive, symmetric directed graph.

Graphs are drawn without using directed edges, for example

The Herbrand Universe

Given a first-order language $\mathcal{L}=\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$, the ground terms are terms that have no variables in them.

The Herbrand Universe $T_{\mathcal{C}}$ for \mathcal{L} is the set of ground terms for the language \mathcal{L}.

Example

Suppose our language has a binary function symbol f and two constants 0,1 . Then the following ground terms will be in the Herbrand universe:
$0,1, f 00, f 01, f 10, f 11, f 0 f 00$, etc.

Now we create the algebra $\mathbf{T}_{\mathcal{C}}$ on the Herbrand universe T_{C} as follows:

$$
\begin{aligned}
& I(c)=c \\
& I(f)\left(t_{1}, \ldots, t_{n}\right)=f t_{1} \cdots t_{n}
\end{aligned}
$$

The Herbrand universe provides an analog of the two-element algebra in the propositional calculus.

It provides a place to check for satisfiability.

We say that a set of clauses \mathcal{S} is satisfiable over the Herbrand universe if
it is possible to interpret the relation symbols on the Herbrand universe in such a way that \mathcal{S} becomes true in this structure.

The basic theorem says that a set of clauses \mathcal{S} is not satisfiable (in any structure) iff
some finite set \mathcal{G} of ground instances of \mathcal{S} is not satisfiable over the Herbrand universe.

To check that
a finite set of ground clauses \mathcal{G} is satisfiable over the Herbrand universe
it suffices to check that

\mathcal{G} is propositionally satisfiable

written p-satisfiable for short.

To check that \mathcal{G} is p-satisfiable means:
consider all atomic formulas in \mathcal{G} to be propositional variables
and then check to see if the propositional clauses are satisfiable.
(LMCS, p. 281)
IV. 27

Example

Consider the set of four ground clauses:

$$
\begin{aligned}
& \{r a\} \\
& \{\neg r a, r f a\} \\
& \{\neg r f a, r f f a\} \\
& \{\neg r f f a\}
\end{aligned}
$$

List the atomic formulas in these clauses with simple propositional variable names:

atomic formula	renamed
$r a$	P
$r f a$	Q
$r f f a$	R

The set of four ground clauses becomes

$$
\{P\} \quad\{\neg P, Q\} \quad\{\neg Q, R\} \quad\{\neg R\}
$$

Continuing with this example, we can now show that the set of three clauses

$$
\begin{aligned}
& \{r a\} \\
& \{\neg r x, r f x\} \\
& \{\neg r f f x\}
\end{aligned}
$$

is not satisfiable as one has a set of ground instances

$$
\begin{aligned}
& \{r a\} \\
& \{\neg r a, r f a\} \\
& \{\neg r f a, r f f a\} \\
& \{\neg r f f a\}
\end{aligned}
$$

that is easily seen not to be p-satisfiable by the translation into

$$
\{P\} \quad\{\neg P, Q\} \quad\{\neg Q, R\} \quad\{\neg R\}
$$

Substitution

Given a substitution $\sigma=\left(\begin{array}{c}x_{1} \leftarrow t_{1} \\ \vdots \\ x_{n} \leftarrow t_{n}\end{array}\right)$ and a
literal $\mathrm{L}\left(x_{1}, \ldots, x_{n}\right)$,
we write $\sigma \mathrm{L}$, or $\mathrm{L}\left(t_{1}, \ldots, t_{n}\right)$, for the result of applying the substitution σ to L .

Given a clause

$$
\mathrm{C}=\mathrm{C}\left(x_{1}, \ldots, x_{n}\right)=\left\{\mathrm{L}_{1}, \cdots, \mathrm{~L}_{k}\right\}
$$

we write $\sigma \mathrm{C}$, or $\mathrm{C}\left(t_{1}, \ldots t_{n}\right)$, for the clause

$$
\left\{\sigma \mathrm{L}_{1}, \ldots, \sigma \mathrm{~L}_{k}\right\}
$$

(LMCS p. 284)
IV. 30

Example

Consider the clause $C=\{\neg r x f x, \neg r f x y\}$.
For

$$
\sigma=\binom{x \leftarrow g x f z}{y \leftarrow f g y x},
$$

we have $\sigma C=\{\neg r g x f z f g x f z, \neg r f g x f z f g y x\}$.

Substitution Theorem

If S is a structure and C is a clause, then for any substitution σ,
$\mathbf{S} \vDash \mathrm{C}$ implies $\mathbf{S} \vDash \sigma \mathrm{C}$.

The complement \bar{L} of a literal L is defined much as it was in the propositional calculus, namely, we convert an atomic formula A to a negated atomic formula $\neg A$, and vice versa.

Resolution for clauses looks similar to that for propositional logic except that we can first use a substitution.

If σ is applied to a clause $C=\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{k}\right\}$, the resulting clause is $\sigma \mathrm{C}=\left\{\sigma \mathrm{L}_{1}, \ldots, \sigma \mathrm{~L}_{k}\right\}$.

As a result of substitution, several literals may collapse into a single literal.
(LMCS p. 285)

Let $C=\{r x y, r x z, \neg r z x\}$.

Applying the substitution

$$
\sigma=\binom{x \leftarrow w}{z \leftarrow y}
$$

yields the clause

$$
\sigma C=\{r w y, r w y, \neg r y w\}=\{r w y, \neg r y w\} .
$$

This gives an example where a substitution collapses three literals into two literals.

An opp-unifier (opposite unifier) of a pair of clauses $C^{\prime \prime}, \mathrm{D}^{\prime \prime}$ is a pair of substitutions σ_{1}, σ_{2} such that

$$
\begin{aligned}
\sigma_{1} \mathrm{C}^{\prime \prime} & =\{\mathrm{L}\} \\
\sigma_{2} \mathrm{D}^{\prime \prime} & =\{\overline{\mathrm{L}}\}
\end{aligned}
$$

where L is a literal.

This says all the literals in $C^{\prime \prime}$ become L under the substitution σ_{1},
and all the literals in $\mathrm{D}^{\prime \prime}$ become $\overline{\mathrm{L}}$ under σ_{2}.

If an opp-unifier exists, then we say the clauses are opp-unifiable.

Example

$$
\begin{aligned}
\mathrm{C}^{\prime \prime} & =\{r x f z, r x f f y\} \\
\mathrm{D}^{\prime \prime} & =\{\neg r f 0 f f x\}
\end{aligned}
$$

The pair σ_{1}, σ_{2} given by

$$
\sigma_{1}=\binom{x \leftarrow f 0}{z \leftarrow f y} \quad \text { and } \quad \sigma_{2}=(x \leftarrow y)
$$

gives an opp-unifier of $C^{\prime \prime}, D^{\prime \prime}$; indeed,

$$
\begin{aligned}
\sigma_{1} \mathrm{C}^{\prime \prime} & =\{r f 0 f f y\} \\
\sigma_{2} \mathrm{D}^{\prime \prime} & =\{\neg r f 0 f f y\}
\end{aligned}
$$

Resolution

For $C=C^{\prime} \cup C^{\prime \prime}$ and $D=D^{\prime} \cup D^{\prime \prime}$:

(LMCS, p. 286)

IV. 36

A derivation of a clause C from a set \mathcal{S} of clauses by resolution is a sequence of clauses

$$
\mathrm{C}_{1}, \ldots, \mathrm{C}_{n}
$$

such that each C_{i} is either

- a member of \mathcal{S}, or
- results from applying resolution to two previous clauses in the sequence,
and the last clause C_{n} is the clause C.

We write $\mathcal{S} \vdash \mathrm{C}$ (read: C is derivable from \mathcal{S}) if there is such a derivation.
(LMCS, p. 287, 293)
IV. 37

Theorem [J.A. Robinson 1965]

Soundness and Completeness of Resolution

A set \mathcal{S} of clauses is not satisfiable iff
there is a derivation of the empty clause by resolution.

Example

1.	$\{r a\}$	given
2.	$\{\neg r x, r f x\}$	given
3.	$\{\neg r f f x\}$	given
4.	$\{\neg r f x\}$	resolution 2,3
5.	$\{\neg r x\}$	resolution 2,4
6.	$\}$	resolution $1,5$.

Step 4:
$\left\{\begin{array}{lll}\sigma_{1}=(x \leftarrow f x) & \text { applied to (2) } \\ \sigma_{2}=(x \leftarrow x) & \text { applied to (3). }\end{array}\right.$
Step 5: $\left\{\begin{array}{lll}\sigma_{1}=(x \leftarrow x) & \text { applied to (2) } \\ \sigma_{2}= & (x \leftarrow x) & \text { applied to (4). }\end{array}\right.$
Step 6: $\left\{\begin{array}{l}\sigma_{1}=(x \leftarrow x) \quad \text { applied to (1) } \\ \sigma_{2}=(x \leftarrow a) \text { applied to (5). }\end{array}\right.$
(LMCS, p. 293)

How to Find σ_{1} and σ_{2}

First: Unification of pairs of literals

Use the same algorithms as for pairs of terms.

Example Consider rxfy and rgzyw:

r	x	f	y						
r	g	z	y	w					

$(x \leftarrow g z y)$

r	g	z	y	f	y				
r	g	z	y	w					

$$
(w \leftarrow f y)
$$

r	g	z	y	f	y				
r	g	z	y	f	y				

$$
\mu=\binom{x \leftarrow g z y}{w \leftarrow f y}
$$

The literals are unifiable, and the most general unifier is

$$
\mu=\binom{x \leftarrow g z y}{w \leftarrow f y} .
$$

Example

Apply the unification algorithm to the
following three literals, where r is binary and f is unary:

$$
\begin{aligned}
& r f f x f y \\
& r f y f f f z \\
& r f f f z f f x
\end{aligned}
$$

r	f	f	x	f	y				
r	f	y	f	f	f	z			
r	f	f	f	z	f	f	x		

$$
(y \longleftarrow f x)
$$

r	f	f	x	f	f	x			
r	f	f	x	f	f	f	z		
r	f	f	f	z	f	f	x		

					$(x \longleftarrow f z)$				
r	f	f	f	z	f	f	f	z	
r	f	f	f	z	f	f	f	z	
r	f	f	f	z	f	f	f	z	
$\mu=\quad\binom{x \longleftarrow f z}{y \longleftarrow f f z}$									

Thus the three literals are unifiable, and the most general unifier is μ.

Most General Opp-Unifiers

If two clauses $C^{\prime \prime}$ and $D^{\prime \prime}$ are opp-unifiable then it is possible to find most general opp-unifiers.

Example

For r a binary relation symbol and f a unary function symbol let

$$
\begin{aligned}
\mathrm{C}^{\prime \prime}(x, y, z) & =\{r f x f y, r z y, r f y f z\} \\
\mathrm{D}^{\prime \prime}(x, y, z) & =\{\neg r x f y, \neg r f y x\} .
\end{aligned}
$$

We want to analyze the unifiability of the five literals

$$
r f x f y \text { rzy rfyfz rufv rfvu. }
$$

Applying the unification algorithm for literals:
(LMCS, p. 300-302)
IV. 44

r	f	x	f	y					
r	z	y							
r	f	y	f	z					
r	u	f	v						
r	f	v	u						

$$
(z \leftarrow f y)
$$

r	f	x	f	y					
r	f	y	y						
r	f	y	f	f	y				
r	u	f	v						
r	f	v	u						

$$
(u \leftarrow f v)
$$

(LMCS, p. 300-302)
IV. 45

r	f	x	f	y					
r	f	y	y						
r	f	y	f	f	y				
r	f	v	f	v					
r	f	v	f	v					

$$
(v \leftarrow y)
$$

r	f	x	f	y					
r	f	y	y						
r	f	y	f	f	y				
r	f	y	f	y					
r	f	y	f	y					

$(x \leftarrow y)$

r	f	y	f	y					
r	f	y	y						
r	f	y	f	f	y				
r	f	y	f	y					
r	f	y	f	y					

NOT OPP-UNIFIABLE

Thus the clauses $C^{\prime \prime}, D^{\prime \prime}$ are not opp-unifiable.

Another Example

Now let

$$
\begin{aligned}
\mathrm{C}^{\prime \prime}(x, y, z) & =\{r f x f y, r f y f z\} \\
\mathrm{D}^{\prime \prime}(x, y, z) & =\{\neg r x f y, \neg r f y x\} .
\end{aligned}
$$

We want to analyze the unifiability of the four literals:
rfxfy rfyfz rufv rfvu.

Applying the unification algorithm for literals:
(LMCS p. 302-303)
IV. 48

r	f	x	f	y					
r	f	y	f	z					
r	u	f	v						
r	f	v	u						

$(u \leftarrow f y)$

r	f	x	f	y					
r	f	y	f	z					
r	f	y	f	v					
r	f	v	f	y					

$(v \longleftarrow y)$
(LMCS p. 302-303)

r	f	x	f	y					
r	f	y	f	z					
r	f	y	f	y					
r	f	y	f	y					

$$
(y \leftarrow x)
$$

r	f	x	f	x					
r	f	x	f	z					
r	f	x	f	x					
r	f	x	f	x					

$(z<x)$
(LMCS p. 302-303)
IV. 50

r	f	x	f	x					
r	f	x	f	x					
r	f	x	f	x					
r	f	x	f	x					

$$
\mu=(z \leftarrow x)(y \leftarrow x)(v \leftarrow y)(u \leftarrow f y)
$$

$$
=\left(\begin{array}{l}
y \leftarrow x \\
z \leftarrow x \\
u \leftarrow f x \\
v \leftarrow x
\end{array}\right) \quad \text { so } \quad \begin{aligned}
& \mu_{1}=\binom{y \leftarrow x}{z \leftarrow x} \\
& \mu_{2}=\binom{x \leftarrow f x}{y \leftarrow x}
\end{aligned}
$$

Thus the clauses $C^{\prime \prime}, D^{\prime \prime}$ are opp-unifiable, and the most general opp-unifier is given by μ_{1}, μ_{2}.

A set \mathcal{S} of clauses is not satisfiable iff there is a derivation of the empty clause by resolution using only most general opp-unifiers.

Handling Equality

We will handle equality (\approx) by giving some of its crucial properties stated as clauses, and then proceed to treat it like any other binary relation symbol.

So let \mathcal{S} be a set of clauses in the language $\mathcal{L}=\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ with equality.

Let \equiv be a new binary relation symbol.

First, we give axioms for \equiv so it behaves like equality.

It will be convenient to write $s \not \equiv t$ instead of $\neg(s \equiv t)$.

Axiomatizing Equality

Let $A x \equiv$ be the set of clauses given by
$\{x \equiv x\}$
$\{x \not \equiv y, y \equiv x\}$
$\{x \not \equiv y, y \not \equiv z, x \equiv z\}$
$\left\{x_{1} \not \equiv y_{1}, \ldots, x_{n} \not \equiv y_{n}, f \vec{x} \equiv f \vec{y}\right\} \quad f n$-ary in \mathcal{F}
$\left\{x_{1} \not \equiv y_{1}, \ldots, x_{n} \not \equiv y_{n}, \neg r \vec{x}, r \vec{y}\right\} \quad r n$-ary in \mathcal{R}.

A clause is a Horn clause if there is at most one positive literal in the clause.

The clauses in $A x \equiv$ are Horn clauses.

Example

For the language $\mathcal{L}=\{f, r\}$,
where f is unary and r is binary,
we can formulate $A x \equiv$ as the five clauses

$$
\begin{aligned}
& \{x \equiv x\} \\
& \{x \not \equiv y, y \equiv x\} \\
& \{x \not \equiv y, y \not \equiv z, x \equiv z\} \\
& \{x \not \equiv y, \quad f x \equiv f y\} \\
& \left\{x_{1} \not \equiv y_{1}, x_{2} \not \equiv y_{2}, \neg r x_{1} x_{2}, r y_{1} y_{2}\right\} .
\end{aligned}
$$

To eliminate \approx we introduce the following:

- Given a clause C:

Define the clause C_{\equiv} to be the result of replacing \approx in C with \equiv.

- Given a set \mathcal{S} of clauses:

Define the set \mathcal{S}_{\equiv} of clauses to be the set of C_{\equiv} for $C \in \mathcal{S}$.

Theorem

A set \mathcal{S} of clauses is not satisfiable
iff
the set of clauses $\mathcal{S} \equiv \cup A x \equiv$ is not satisfiable
iff
there is a derivation of the empty clause by resolution* from $\mathcal{S} \equiv \cup \mathrm{Ax} \equiv$.
*Using only most general opp-unifiers!

Equational Arguments and Clauses

Now we can adapt our work on clauses to study equational arguments.

Theorem

An equational argument

$$
\mathcal{S} \quad \therefore s \approx t
$$

(that is, $\mathcal{S} \models s \approx t$) is valid iff $\neg \operatorname{Sat}(\mathcal{S} \cup\{s(\vec{c}) \not \approx t(\vec{c})\})$,
where \vec{c} is a sequence of constant symbols that do not appear in the original argument.

Example

We will show

$$
x \cdot y \approx x \vDash x \cdot(y \cdot z) \approx(x \cdot y) \cdot z
$$

using clause logic.

First translate the argument into the nonsatisfiability of a set of clauses:
$\neg \operatorname{Sat}(\{x \cdot y \approx x\}, \quad\{a \cdot(b \cdot c) \not \approx(a \cdot b) \cdot c\})$.

We now want to replace the \approx by \equiv.

The set $\mathcal{S} \equiv \cup \mathrm{Ax} \equiv$ of clauses is:

$$
\begin{aligned}
& \{x \cdot y \equiv x\} \\
& \{a \cdot(b \cdot c) \not \equiv(a \cdot b) \cdot c\} \\
& \{x \equiv x\} \\
& \{x \not \equiv y, y \equiv x\} \\
& \{x \not \equiv y, y \not \equiv z, x \equiv z\} \\
& \left\{x_{1} \not \equiv y_{1}, x_{2} \not \equiv y_{2}, x_{1} \cdot x_{2} \equiv y_{1} \cdot y_{2}\right\} .
\end{aligned}
$$

We want to show this set of clauses is not satisfiable.

We can approach this two ways, via ground instances or via resolution.

For the ground instances method consider

Clause	Ground instances
$\{x \cdot y \equiv x\}$	$\{(a \cdot b) \cdot c \equiv a \cdot b\}$
	$\{a \cdot b \equiv a\}$
	$\{a \cdot(b \cdot c) \equiv a\}$
$\{a \cdot(b \cdot c) \not \equiv(a \cdot b) \cdot c\}$	$\{a \cdot(b \cdot c) \not \equiv(a \cdot b) \cdot c\}$
$\{x \not \equiv y, y \equiv x\}$	$\{(a \cdot b) \cdot c \not \equiv a, a \equiv(a \cdot b) \cdot c\}$
$\{x \not \equiv y, y \not \equiv z, x \equiv z\}$	$\{(a \cdot b) \cdot c \not \equiv a \cdot b, a \cdot b \not \equiv a,(a \cdot b) \cdot c \equiv a\}$
	$\{a \cdot(b \cdot c) \not \equiv a, a \not \equiv(a \cdot b) \cdot c$,

Rename the (ground) atomic formulas:

$$
\begin{aligned}
& P:(a \cdot b) \cdot c \equiv a \cdot b \\
& Q: a \cdot b \equiv a \\
& R: a \cdot(b \cdot c) \equiv a \\
& S:(a \cdot b) \cdot c \equiv a \\
& T: a \equiv(a \cdot b) \cdot c \\
& U: a \cdot(b \cdot c) \equiv(a \cdot b) \cdot c,
\end{aligned}
$$

The ground instances become

$$
\begin{array}{llll}
\{P\} & \{Q\} & \{R\} & \{\neg U\} \\
\{\neg S, & T\} & \\
\{\neg P, \neg Q, S\} & \\
\{\neg R, \neg T, U\} . &
\end{array}
$$

This collection of propositional clauses is easily seen to be unsatisfiable.

And for the direct resolution method:

1. $\{x \cdot y \equiv x\}$
given
2. $\{a \cdot(b \cdot c) \not \equiv(a \cdot b) \cdot c\}$
given
3. $\{x \not \equiv y, y \equiv x\}$
given
4. $\quad\{x \not \equiv y, y \not \equiv z, x \equiv z\}$
given
5. $\quad\{a \cdot(b \cdot c) \not \equiv y, y \not \equiv(a \cdot b) \cdot c\} \quad 2,4$
6. $\{a \not \equiv(a \cdot b) \cdot c\}$

1, 5
7. $\{(a \cdot b) \cdot c \not \equiv a\}$

3, 6
8. $\{(a \cdot b) \cdot c \not \equiv y, y \not \equiv a\}$

4, 7
9. $\{a \cdot b \not \equiv a\}$

1, 8
10. $\}$

1,9 .

