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First—Order Languages without Equality

A first—order language without equality £ will

consist of

e aset F of function symbols f,qg,h,---

with associated arities;

e aset R of relation symbols r,ry,ro,---

with associated arities;

e a set C of constant symbols c¢,d,e---;

e aset X ofvariables x,y,z,---.
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Each relation symbol r has a positive

integer, called its arity, assigned to it.

If the number is n, we say r IS n—ary.

For small n we use the same special names

that we use for function symbols:

unary, binary, ternary.

Theset £L = RUFUC is called a
first—order language.

{+,-,<,—,0,1} would be a natural choice of
first-order language when working with the

integers.
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Interpretations and Structures

The obvious interpretation of a relation

symbol is as a relation on a set.

If A is aset and n is a positive integer,
then an n—ary relation » on A is a subset
of A™,

that is, r consists of a collection of

n—tuples (a1,...,an) Of elements of A.
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An interpretation [ of the first—order
language L on aset S is a mapping with

domain L such that

e I(c) is an element of S for each constant

symbol ¢ in C;

e /(f) is an n—ary function on S for each

n—ary function symbol f in F,

e I(r) is an n—ary relation on S for each

n—ary relation symbol » in K.

An L-structure S is a pair (S,I), where I

is an interpretation of £ on S.



(LMCS, p. 262) V.5

Preferred notation

We prefer to write

>  (orjust ¢)  for I(c)
S (orjust f)  for I(f)
rS  (orjust r)  for I(r)

(S, F,R,C) for (S,1)

Example
The structure (R,+,-,<,0,1), the reals with
addition, multiplication, less than, and two

specified constants has:

F = {+,} R = {<} ¢c = {0,1}.
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If e R is a unary predicate symbol,

then in any L—structure S,

the relation > is a subset of S.

We can picture this as:
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If £ consists of a single binary relation

symbol r,

then we call an L—structure a directed

graph.

A small finite directed graph can be

conveniently described in three different ways:

e List the ordered pairs in the relation r.

A simple example with S = {a,b,c} is

r = {(a,a), (a,b), (b,c), (c,b), (c,a)}.
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e Use a table. For the same example we

have

O R
O o
= Olo

O S Qs

1 10

(An entry of 1 in the table indicates a pair is in the

relation.)

e Draw a picture. Again, using the same

example:

/C
ca\i
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Example
An interpretation of a language on a small set

can be conveniently given by tables.

Let £ = {4+,<}

where 4+ and < are binary.

The following tables give an interpretation

of £ on the two—element set S = {a,b}:

+la b <la b
ala b a0 1
b | b a b0 O
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A clause in the predicate logic uses atomic
formulas instead of propositional variables.
e An atomic formula A is an expression

f"'tltn,

where the t; are terms, and

r 1S an mn—ary relation symbol.

Examples of atomic formulas:

T <y (z+y) <(z-y) rfxgyO

where r and g are binary, f is unary.
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Literals

e A literal is either

an atomic formula A

or a negated atomic formula —A

Examples of literals

r <y ~((z+y) <(y-2)) —rfrgry

An atomic formula is a positive literal.

A negated atomic formula is a negative

literal.
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Clauses

e A clause C is a finite set of literals

{Ll, ,Ln} .

We also use the notation

LiV---VLiy, .

Examples of clauses:

{—(x<y), ~(¥y<z2), "(x<2)}

{rex, regly, —rfrgyz}
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The parsing algorithm for atomic formulas.

Example

r a binary relation symbol
f a unary function symbol
g a binary function symbol

¢ a constant symbol

Is rgxfyfc an atomic formula?

If so find the two subterms t1,t> such that

rt1to = rgxfyfc.

ilO 1 2 3 45 6
siilm g x [y f c
w0 =1 0 0112

( ) ()
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Semantics

Given a first-order structure S which tuples
of elements a1,...,an, mMake a literal

L(zq1,...,zn) true?

If a is such a tuple for the literal L we say

e L(d) holds (is true) in S

e S satisfies (models) L(a)

and write S &= L(a).

(For clauses C we have parallel concepts.)
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The set of tuples from S that make

L(xz1,...,zn) true
form an n-ary relation that we call LS.

The set of tuples from S that make

C(x1,...,xzn) true

form an n-ary relation that we call CS.
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Example

Let S be given by the tables:

fla b ria b
ala a al0 1
bla b b0 O

Let L1 = rfzyfxx, Lo = —rfzyx, C =
{L1,Lo}.

A combined table for Li,L,,C is

L1 Lo C
x y| fry fxx rfryfrx rfzyr —-rfryx {rfryfzx, -rfryx}
a al| a a 0 0 1 1
a bl a a 0 0 1 1
b a| a b 1 1 0 1
b b| b b 0 0 1 1
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Satisfiability

S = L(z1,...,2n)

—

if for every a from S we have L(a) holds
in S.

—

if for every choice of a
C(d) holds in 8.

from S we have

For & a set of clauses, we say

S = S

provided S satisfies every clause C in S.
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We say Sat(S), or S is satisfiable, if there

is a structure S such that S|E=S.

If this is not the case, we say —Sat(S),
meaning S is not satisfiable.

Predicate clause logic, like propositional

clause logic, revolves around the study of

not satisfiable
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Example
Given two unary relation symbols r1, 1o,

{=r12, "rox}

is satisfied by a structure S iff
for a€ S either —-7ria or —roa holds,

and this is the case iff the sets r; and o
are disjoint, thatis, riNr = @.

We can picture this situation as follows:

4 N

S
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Example

Given two unary relation symbols rq1, 1o,

{=riz, roz}

is satisfied by a structure S iff

the set rq is a subset of r5.

We can picture this situation as follows:

4 N

S
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Example
Let S be a directed graph, with £ = {r}.

e S will satisfy the clause | {rxz}

iff the binary relation r is reflexive.

e S will satisfy the clause | {—rxz}

iff the binary relation r is irreflexive.

e S will satisfy the clause | {—rzy, ryz}

iff the binary relation r is symmetric.
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e S will satisfy the clause

{—rzxy, —ryz, rxz}| iff the binary relation r

is transitive

e A graph is an irreflexive, symmetric

directed graph.

Graphs are drawn without using directed

edges, for example
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The Herbrand Universe

Given a first-order language £ =R UF UC,
the ground terms are terms that have no

variables in them.

The Herbrand Universe T, for L is the set

of ground terms for the language L.

Example

Suppose our language has a binary function
symbol f and two constants 0,1. Then the
following ground terms will be in the

Herbrand universe:

0, 1, f00, fOl, f10, f11, fOfOO, etc.
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Now we create the algebra T, on the

Herbrand universe T as follows:

I(c) = ¢

I(H)(#1s-- - 5tn) = ft1-tn

The Herbrand universe provides an analog of
the two—element algebra in the propositional

calculus.

It provides a place to check for satisfiability.
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We say that a set of clauses S is satisfiable

over the Herbrand universe if

it is possible to interpret the relation symbols
on the Herbrand universe in such a way that

S becomes true in this structure.

The basic theorem says that a set of clauses

S is not satisfiable (in any structure) iff

some finite set ¢ of ground instances of S

IS not satisfiable over the Herbrand universe.
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To check that

a finite set of ground clauses G is
satisfiable over the Herbrand universe

it suffices to check that

g is propositionally satisfiable

written p-satisfiable for short.

To check that G is p-satisfiable means:

consider all atomic formulas in G
to be propositional variables

and then check to see if the propositional

clauses are satisfiable.
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Example

Consider the set of four ground clauses:

IvV.27

{ra}

{—=ra, rfa}

{=rfa, vffa}

{—rffa}
List the atomic
formulas in these atomic formula renamed
clauses with simple ra P
propositional variable rfa @
names: rffa R

The set of four ground clauses becomes

Py 1~P Q} {=Q, R} {~R;
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Continuing with this example, we can now

show that the set of three clauses

{ra}
{—rz, rfx}
{—rffx}
iS not satisfiable as one has a set of ground

instances

{-rfa, vffa}
{=rffa}
that is easily seen not to be p-satisfiable by

the translation into

Py {~P Qy {~Q R} {~R;



(LMCS p. 284) IV.29

Substitution

Tr1 < 11

Given a substitution o = : and a
In < tn

literal L(x1,...,2n),

we write oL, or L(t1,...,tn), for the result of

applying the substitution o to L.

Given a clause

C = C(ajl,...,.ibn) — {I—]_) Tt Lk}7

we write oC, or C(¢1,...tn), for the clause

{O‘L]_,... ,O‘Lk}.
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Example

Consider the clause C = {—-rzfz, ~rfzxy}.

T <— grfz
o = :
y — foyx

we have oC = {—-rgxfzfgxfz, ~rfgrfzfgyzr}.

For

Substitution Theorem
If S is a structure and C is a clause, then

for any substitution o,

S = C implies S = oC.
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The complement L of a literal L is defined
much as it was in the propositional calculus,
namely, we convert an atomic formula A to a

negated atomic formula —A, and vice versa.

Resolution for clauses looks similar to that for
propositional logic except that we can first

use a substitution.

If o is applied to a clause C = {Ly,...,L.},

the resulting clause is oC = {olq,...,0L.}.

As a result of substitution, several literals

may collapse into a single literal.
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Let C = {ray, rxz, —rzz}.

Applying the substitution

( r <— W >
o =

Z <Y
yields the clause

oC = {rwy, rwy, —ryw} = {rwy, ~ryw}.

This gives an example where a substitution

collapses three literals into two literals.
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An opp—unifier (opposite unifier) of a pair
of clauses C”,D” is a pair of substitutions

01,02 such that
o1C" = {L}
ooD" = {L},

where L is a literal.

This says all the literals in C” become L

under the substitution o1,

and all the literals in D” become L under

go.

If an opp—unifier exists, then we say the

clauses are opp—unifiable.
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Example

C" = {rafz raffy)
D" = {~rf0ffz)

The pair 01,0 given by

0
o1 = T and oo = (z«<—vy)
z— [y
gives an opp—unifier of C”,D”; indeed,
o1C" = {rf0ffy}
ooD" = {=7fO0ffy}
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Resolution

For C

Cuc”

and D

D’ u D’

Resolution of Clauses

c'uc’ D'uDbD”

o1C" U oD’

where o1,05 is an opp—unifier of C”,D”

l.e.,

o1 C//
oo D//

with L a literal and

L

L}
{L},

its complement.
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A derivation of a clause C from aset S of

clauses by resolution is a sequence of clauses

C]_, ,Cn

such that each C; is either

e a member of S, or

e results from applying resolution to two

previous clauses in the sequence,

and the last clause (C,, is the clause C.

We write SF C (read: C is derivable from

S) if there is such a derivation.
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Theorem [J.A. Robinson 1965]

Soundness and Completeness

of Resolution

A set S of clauses is not satisfiable iff

there is a derivation of the empty clause by

resolution.
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Example
1. {ra}  given
2. {—=rx, rfz}  given
3. {=rffx}  given
4. {—=rfx}  resolution 2,3
5. {—=rxz}  resolution 2,4
6. {} resolution 1,5.

Step 4.
ocr = (x+« fx) applied to (2)
oo = (x+<x) applied to (3).
_ o1 = (x+«<x) applied to (2)
>tep 5: { o5 = (xz«a2) applied to (4).

(x <— x) applied to (1)
(z «<— a) applied to (5).

g1
g2

Step 6: {
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How to Find o7 and o5

First: Unification of pairs of literals

Use the same algorithms as for pairs of terms.

Example Consider rxfy and rgzyw:
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_ (X =—92y
H <W<—fy>

The literals are unifiable, and the most

general unifier is

_ [ v gzy
P \wefy )
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Example
Apply the unification algorithm to the
following three literals, where r is binary and

f is unary:

rffxfy
rfyfffz
rfffzffx
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l X<—Ff2z
M= <y<—ffz>

Thus the three literals are unifiable, and the

most general unifier is pu.
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Most General Opp-Unifiers
If two clauses C” and D" are opp-unifiable
then it is possible to find most general

opp-unifiers.

Example
For r a binary relation symbol and f a

unary function symbol let

C"(x,y,2) = {rfxzfy, rzy, rfyfz}
D”(af;,y,z) — {_'waya ﬁ’r‘f’yx}'

We want to analyze the unifiability of the five

literals

rfefy rzy rfyfz rufv rfou.

Applying the unification algorithm for literals:
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ri{f | x| f |y
rizly
r{fly|f|z
rfu|f|Vv
r{f|v]|u
(z—1y)
r|f x| fly
riflYyly
rrfly | f|fly
rfufl f|v
r{f|Vvi|u

(Uu=fv)
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(LMCS, p. 300-302)

(V—vYy)

(X=—Y)
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Thus the clauses C” D" are not

opp—unifiable.
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Another Example

Now let

C"(z,y,2) = {rfafy, rfyfz}
D”(CE,y,Z) — {_'Txfya _'Tfyx}'

We want to analyze the unifiability of the

four literals:

rfxfy rfyfz rufv rfou.

Applying the unification algorithm for literals:
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(LMCS p. 302-303) IV.49
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r|f | x| f|X
ryf x| f|x
ryf x| f|x
ryf x| f|x

U= (Zz=—X) (y=—X) (v=—Yy)(u - fy)

y<—X ( N
SO Yy—X
_ Z—=—X V=
: =X
u—— fx
V=X [ X=1X
“2_ y‘_X

Thus the clauses C”,D” are opp—unifiable,

and the most general opp—unifier is given by

M1, H2-
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Main T heorem
on
Resolution Theorem Proving

( J.A. Robinson 1965)

A set S of clauses is not satisfiable iff there
IS a derivation of the empty clause by
resolution using only most general

opp-unifiers.
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Handling Equality

We will handle equality (=) by giving some of
its crucial properties stated as clauses, and
then proceed to treat it like any other binary

relation symbol.

So let § be a set of clauses in the language
L = RUFUC with equality.

Let = be a new binary relation symbol.
First, we give axioms for = so it behaves
like equality.

It will be convenient to write s #t instead
of — (S — t)
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Axiomatizing Equality

Let AX= Dbe the set of clauses given by

{r £y, y=a}

{c£y, y£ 2 =2}

{x1 Z y1,--- ,Tn Z Yn, [T = fy} f n—ary in F
{x1 #Z y1,--- ,Tn Z Yn, TE, Ty} r n—ary in R.

A clause is a Horn clause if there is at most

one positive literal in the clause.

The clauses in Ax= are Horn clauses.
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Example
For the language L = {f,r},

where f is unary and r is binary,

we can formulate Ax= as the five clauses

{x £y, y=x}
(e £y, y &2, =2}
{x Zvy, fxr=fy}

{z1 # y1, T2 £ yo, " rr1T, TYL1YD}.
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To eliminate =~ we introduce the following:

e Given a clause C:

Define the clause C= to be the result of

replacing ~ in C with =.

e Given a set S of clauses:

Define the set S= of clauses to be the set of
CE for C e S.
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T heorem

A set S of clauses is not satisfiable

iii

the set of clauses S= U AX= is not satisfiable

hii

there is a derivation of the empty clause by

resolution® from S=U AXx=.

*Using only most general opp-unifiers!
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Equational Arguments and Clauses

Now we can adapt our work on clauses to

study equational arguments.

T heorem

An equational argument
S .s~t
(that is, Sl=s=t) is valid iff

—-Sat( S U {s(c) # t(c) }),

where ¢ is a sequence of constant symbols

that do not appear in the original argument.
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Example

We will show

oy R zE=Eo(yz)r (@y): 2

using clause logic.

First translate the argument into the

nonsatisfiability of a set of clauses:

—Sat({z-y = z}, {a-(b-¢c) % (a-b)-c} ).

We now want to replace the =~ by =.
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The set S= U Ax= of clauses is:

{z-y=a}
{a-(b-c) Z (a-b) c}
{x = x}

{x Zy, y==x}

{zZvy, y# 2 z==z}
{1 £ y1, 22 Z Y2, T1 -T2 =Y1 - Y2}.

We want to show this set of clauses is not

satisfiable.

We can approach this two ways, via ground

instances or via resolution.
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For the ground instances method consider

Clause Ground instances
{z-y=a) {(a-b)-c=a-b)
{a-b=a)
{a-(b-¢) =a)
fa-(-c)Z @bt fa-(b-c)# @b c}
{z £y, y=a} {(a-b)-c#a, a=(a-b)-c}

{x £y, y£z =2} {(a-b)-cZa-b, a-bZa, (a-b) -c=a}
{a'(b'c)faa affi— (a'b)°ca
a-(b-c)=(a-b)-c}
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Rename the (ground) atomic formulas:

P: (a-b)-c
QR: a-b=a
R: a-(b-c)
S: (a-b)-c
T: a = (a-
U: a-(b-c)

b)

a-b

a

a

- C

(a-b)-c,

The ground instances become

Py {Qr {R} {~U;

{_' S, T}

{-P, -Q, S}
(=R, =T, U}.

IV.o1l

T his collection of propositional clauses is

easily seen to be unsatisfiable.



(LMCS, p. 313) V.62

And for the direct resolution method:

1. {z-y = z} given
2. {a-(b-¢c) # (a-b)-c} given
3. {z # vy, y = x} given
4. {xz # y,y # z, x = =z} given
5. {a-(b-c) # y,y Z (a-b)-c} 2,4
6. {a £Z (a-b)-c} 1,5
7. {(a-b)-c £ a} 3,6
8. {(a-b)-c £ y, y £ a} 4,7
9. {a-b # a} 1,8
10. {} 1,9.



