
(LMCS, p. 261-262) IV.1

First–Order Languages without Equality

A first–order language without equality L will

consist of

• a set F of function symbols f, g, h, · · ·

with associated arities;

• a set R of relation symbols r, r1, r2, · · ·

with associated arities;

• a set C of constant symbols c, d, e · · · ;

• a set X of variables x, y, z, · · · .

(LMCS, p. 262) IV.2

Each relation symbol r has a positive

integer, called its arity, assigned to it.

If the number is n, we say r is n–ary.

For small n we use the same special names

that we use for function symbols:

unary, binary, ternary.

The set L = R∪ F ∪ C is called a

first–order language.

{+, ·, <,−,0,1} would be a natural choice of

first-order language when working with the

integers.

(LMCS, p. 262) IV.3

Interpretations and Structures

The obvious interpretation of a relation

symbol is as a relation on a set.

If A is a set and n is a positive integer,

then an n–ary relation r on A is a subset

of An,

that is, r consists of a collection of

n–tuples (a1, . . . , an) of elements of A.

(LMCS, p. 262) IV.4

An interpretation I of the first–order

language L on a set S is a mapping with

domain L such that

• I(c) is an element of S for each constant

symbol c in C;

• I(f) is an n–ary function on S for each

n–ary function symbol f in F;

• I(r) is an n–ary relation on S for each

n–ary relation symbol r in R.

An L-structure S is a pair (S, I), where I

is an interpretation of L on S.

(LMCS, p. 262) IV.5

Preferred notation

We prefer to write

cS (or just c) for I(c)

fS (or just f) for I(f)

rS (or just r) for I(r)

(S,F ,R, C) for (S, I)

Example

The structure (R,+, ·, <,0,1), the reals with

addition, multiplication, less than, and two

specified constants has:

F = {+, ·} R = {<} C = {0,1}.

(LMCS, p. 263) IV.6

If r ∈ R is a unary predicate symbol,

then in any L–structure S,

the relation rS is a subset of S.

We can picture this as:

S
r

(LMCS, p. 263) IV.7

If L consists of a single binary relation

symbol r,

then we call an L–structure a directed

graph.

A small finite directed graph can be

conveniently described in three different ways:

• List the ordered pairs in the relation r.

A simple example with S = {a, b, c} is

r = {(a, a), (a, b), (b, c), (c, b), (c, a)}.

(LMCS, p. 263) IV.8

• Use a table. For the same example we

have

r a b c

a 1 1 0
b 0 0 1
c 1 1 0

(An entry of 1 in the table indicates a pair is in the

relation.)

• Draw a picture. Again, using the same

example:

b

c

a

(LMCS, p. 263) IV.9

Example

An interpretation of a language on a small set

can be conveniently given by tables.

Let L = {+, <}

where + and < are binary.

The following tables give an interpretation

of L on the two–element set S = {a, b}:

+ a b

a a b

b b a

< a b

a 0 1
b 0 0

(LMCS, p. 264-265) IV.10

A clause in the predicate logic uses atomic

formulas instead of propositional variables.

• An atomic formula A is an expression

rt1 · · · tn ,

where the ti are terms, and

r is an n–ary relation symbol.

Examples of atomic formulas:

x < y (x+ y) < (x · y) rfxgy0

where r and g are binary, f is unary.

(LMCS, p. 264-265) IV.11

Literals

• A literal is either

an atomic formula A

or a negated atomic formula ¬A

Examples of literals

x < y ¬ ((x+ y) < (y · z)) ¬ rfxgxy

An atomic formula is a positive literal.

A negated atomic formula is a negative

literal.

(LMCS, p. 264-265) IV.12

Clauses

• A clause C is a finite set of literals

{L1, . . . , Ln} .

We also use the notation

L1 ∨ · · · ∨ Ln .

Examples of clauses:

{¬ (x < y), ¬ (y < z), ¬ (x < z)}

{rxx, rxg1y, ¬ rfxgyz}

(LMCS, p. 265-266) IV.13

The parsing algorithm for atomic formulas.

Example

r a binary relation symbol

f a unary function symbol

g a binary function symbol

c a constant symbol

Is rgxfyfc an atomic formula?

If so find the two subterms t1, t2 such that

rt1t2 = rgxfyfc.

i 0 1 2 3 4 5 6

si r g x f y f c

γi 0 −1 0 0 1 1 2

() ()

(LMCS, p. 267-268) IV.14

Semantics

Given a first-order structure S which tuples

of elements a1, . . . , an make a literal

L(x1, . . . , xn) true?

If ~a is such a tuple for the literal L we say

• L(~a) holds (is true) in S

• S satisfies (models) L(~a)

and write S |= L(~a).

(For clauses C we have parallel concepts.)

(LMCS, p. 267-268) IV.15

The set of tuples from S that make

L(x1, . . . , xn) true

form an n-ary relation that we call LS.

The set of tuples from S that make

C(x1, . . . , xn) true

form an n-ary relation that we call CS.

(LMCS, p. 268) IV.16

Example

Let S be given by the tables:

f a b

a a a

b a b

r a b

a 0 1
b 0 0

Let L1 = rfxyfxx, L2 = ¬ rfxyx, C =

{L1, L2}.

A combined table for L1, L2,C is

L1 L2 C

x y fxy fxx rfxyfxx rfxyx ¬ rfxyx {rfxyfxx, ¬ rfxyx}

a a a a 0 0 1 1

a b a a 0 0 1 1

b a a b 1 1 0 1

b b b b 0 0 1 1

(LMCS, p. 269) IV.17

Satisfiability

S |= L(x1, . . . , xn)

if for every ~a from S we have L(~a) holds

in S.

S |= C(x1, . . . , xn)

if for every choice of ~a from S we have

C(~a) holds in S.

For S a set of clauses, we say

S |= S

provided S satisfies every clause C in S.

(LMCS, p. 269) IV.18

We say Sat(S), or S is satisfiable, if there

is a structure S such that S |= S.

If this is not the case, we say ¬Sat(S),

meaning S is not satisfiable.

Predicate clause logic, like propositional

clause logic, revolves around the study of

not satisfiable

.

(LMCS, p. 269) IV.19

Example

Given two unary relation symbols r1, r2,

{¬ r1x, ¬ r2x}

is satisfied by a structure S iff

for a ∈ S either ¬ r1a or ¬ r2a holds,

and this is the case iff the sets r1 and r2

are disjoint, that is, r1 ∩ r2 = Ø.

We can picture this situation as follows:

S
1
r 2

r

(LMCS, p. 270) IV.20

Example

Given two unary relation symbols r1, r2,

{¬ r1x, r2x}

is satisfied by a structure S iff

the set r1 is a subset of r2.

We can picture this situation as follows:

S

1r
r2

(LMCS, p. 270) IV.21

Example

Let S be a directed graph, with L = {r}.

• S will satisfy the clause {rxx}

iff the binary relation r is reflexive.

• S will satisfy the clause {¬ rxx}

iff the binary relation r is irreflexive.

• S will satisfy the clause {¬ rxy, ryx}

iff the binary relation r is symmetric.

(LMCS, p. 270) IV.22

• S will satisfy the clause

{¬ rxy, ¬ ryz, rxz} iff the binary relation r

is transitive

• A graph is an irreflexive, symmetric

directed graph.

Graphs are drawn without using directed

edges, for example

c

b

e d

a

(LMCS, p. 277) IV.23

The Herbrand Universe

Given a first-order language L = R∪ F ∪ C,

the ground terms are terms that have no

variables in them.

The Herbrand Universe TC for L is the set

of ground terms for the language L.

Example

Suppose our language has a binary function

symbol f and two constants 0,1. Then the

following ground terms will be in the

Herbrand universe:

0, 1, f00, f01, f10, f11, f0f00, etc.

(LMCS, p. 278) IV.24

Now we create the algebra TC on the

Herbrand universe TC as follows:

I(c) = c

I(f)(t1, . . . , tn) = ft1 · · · tn

The Herbrand universe provides an analog of

the two–element algebra in the propositional

calculus.

It provides a place to check for satisfiability.

(LMCS, p. 278) IV.25

We say that a set of clauses S is satisfiable

over the Herbrand universe if

it is possible to interpret the relation symbols

on the Herbrand universe in such a way that

S becomes true in this structure.

The basic theorem says that a set of clauses

S is not satisfiable (in any structure) iff

some finite set G of ground instances of S

is not satisfiable over the Herbrand universe.

(LMCS, p. 281) IV.26

To check that

a finite set of ground clauses G is
satisfiable over the Herbrand universe

it suffices to check that

G is propositionally satisfiable

written p-satisfiable for short.

To check that G is p-satisfiable means:

consider all atomic formulas in G
to be propositional variables

and then check to see if the propositional

clauses are satisfiable.

(LMCS, p. 281) IV.27

Example

Consider the set of four ground clauses:

{ra}

{¬ ra, rfa}

{¬ rfa, rffa}

{¬ rffa}

List the atomic

formulas in these

clauses with simple

propositional variable

names:

atomic formula renamed

ra P

rfa Q

rffa R

The set of four ground clauses becomes

{P} {¬P, Q} {¬Q, R} {¬R}

(LMCS, p. 282) IV.28

Continuing with this example, we can now

show that the set of three clauses

{ra}

{¬ rx, rfx}

{¬ rffx}

is not satisfiable as one has a set of ground

instances

{ra}

{¬ ra, rfa}

{¬ rfa, rffa}

{¬ rffa}

that is easily seen not to be p-satisfiable by

the translation into

{P} {¬P, Q} {¬Q, R} {¬R}

(LMCS p. 284) IV.29

Substitution

Given a substitution σ =







x1 ← t1
...

xn ← tn






and a

literal L(x1, . . . , xn),

we write σL, or L(t1, . . . , tn), for the result of

applying the substitution σ to L.

Given a clause

C = C(x1, . . . , xn) = {L1, · · · , Lk},

we write σC, or C(t1, . . . tn), for the clause

{σL1, . . . , σLk}.

(LMCS p. 284) IV.30

Example

Consider the clause C = {¬ rxfx, ¬ rfxy}.

For

σ =

(

x← gxfz

y ← fgyx

)

,

we have σC = {¬ rgxfzfgxfz, ¬ rfgxfzfgyx}.

Substitution Theorem

If S is a structure and C is a clause, then

for any substitution σ,

S |= C implies S |= σC.

(LMCS p. 284-285) IV.31

The complement L of a literal L is defined

much as it was in the propositional calculus,

namely, we convert an atomic formula A to a

negated atomic formula ¬A, and vice versa.

Resolution for clauses looks similar to that for

propositional logic except that we can first

use a substitution.

If σ is applied to a clause C = {L1, . . . , Lk},

the resulting clause is σC = {σL1, . . . , σLk}.

As a result of substitution, several literals

may collapse into a single literal.

(LMCS p. 285) IV.32

Let C = {rxy, rxz, ¬ rzx}.

Applying the substitution

σ =

(

x← w

z ← y

)

yields the clause

σC = {rwy, rwy, ¬ ryw} = {rwy, ¬ ryw}.

This gives an example where a substitution

collapses three literals into two literals.

(LMCS p. 285) IV.33

An opp–unifier (opposite unifier) of a pair

of clauses C′′,D′′ is a pair of substitutions

σ1, σ2 such that

σ1C′′ = {L}

σ2D′′ = {L},

where L is a literal.

This says all the literals in C′′ become L

under the substitution σ1,

and all the literals in D′′ become L under

σ2.

If an opp–unifier exists, then we say the

clauses are opp–unifiable.

(LMCS p. 285) IV.34

Example

C′′ = {rxfz, rxffy}

D′′ = {¬ rf0ffx}

The pair σ1, σ2 given by

σ1 =







x← f0

z ← fy






and σ2 = (x← y)

gives an opp–unifier of C′′,D′′; indeed,

σ1C′′ = {rf0ffy}

σ2D′′ = {¬ rf0ffy}

(LMCS, p. 286) IV.35

Resolution

For C = C′ ∪ C′′ and D = D′ ∪ D′′:

Resolution of Clauses

C′ ∪ C′′, D′ ∪ D′′

σ1C′ ∪ σ2D′
,

where σ1, σ2 is an opp–unifier of C′′,D′′,

i.e.,

σ1C′′ = {L}

σ2D′′ = {L},

with L a literal and L its complement.

(LMCS, p. 286) IV.36

A derivation of a clause C from a set S of

clauses by resolution is a sequence of clauses

C1, . . . ,Cn

such that each Ci is either

• a member of S, or

• results from applying resolution to two

previous clauses in the sequence,

and the last clause Cn is the clause C.

We write S ` C (read: C is derivable from

S) if there is such a derivation.

(LMCS, p. 287, 293) IV.37

Theorem [J.A. Robinson 1965]

Soundness and Completeness

of Resolution

A set S of clauses is not satisfiable iff

there is a derivation of the empty clause by

resolution.

(LMCS, p. 286) IV.38

Example

1. {ra} given

2. {¬ rx, rfx} given

3. {¬ rffx} given

4. {¬ rfx} resolution 2,3

5. {¬ rx} resolution 2,4

6. { } resolution 1,5.

Step 4:
{

σ1 = (x← fx) applied to (2)
σ2 = (x← x) applied to (3).

Step 5:

{

σ1 = (x← x) applied to (2)
σ2 = (x← x) applied to (4).

Step 6:

{

σ1 = (x← x) applied to (1)
σ2 = (x← a) applied to (5).

(LMCS, p. 293) IV.39

How to Find σ1 and σ2

First: Unification of pairs of literals

Use the same algorithms as for pairs of terms.

Example Consider rxfy and rgzyw:

r

r yx f

g z y w

() x g z y

yf

g z y

g z y

r

r

w

 w f y()

(LMCS, p. 293) IV.40

yf

g z y

g z y

yfr

r

µ =
x g z y
w f y

The literals are unifiable, and the most

general unifier is

µ =

(

x← gzy

w ← fy

)

.

(LMCS, p. 297) IV.41

Example

Apply the unification algorithm to the

following three literals, where r is binary and

f is unary:

rffxfy

rfyfffz

rfffzffx

r

r f x yf f

f f f fy

r f f f xf z

z

f

(y f x)

(LMCS, p. 297) IV.42

f z

f z

f z

f z

f z

µ =
x f z
y f f z

xf xf

f f f zxf

r

r f

f

r f ff f

f

f f f zf

f f

r

r f f

f

r f f f xf zf

 x f z()

Thus the three literals are unifiable, and the

most general unifier is µ.

(LMCS, p. 300-302) IV.43

Most General Opp-Unifiers

If two clauses C′′ and D′′ are opp-unifiable

then it is possible to find most general

opp-unifiers.

Example

For r a binary relation symbol and f a

unary function symbol let

C′′(x, y, z) = {rfxfy, rzy, rfyfz}

D′′(x, y, z) = {¬ rxfy, ¬ rfyx}.

We want to analyze the unifiability of the five

literals

rfxfy rzy rfyfz rufv rfvu.

Applying the unification algorithm for literals:

(LMCS, p. 300-302) IV.44

r f x f y

r

r yf f

r u

vr

yf

f y

y

()u f v

f

f v

u

r f x f y

r y

r yf f z

r

f

f v u

u vr

z

()z f y

(LMCS, p. 300-302) IV.45

x f y

y f

v

y

f y

y

f v

vfv

v y()

r f

r

r f

r f

r

f

f

x f y

y f

y

f y

y

f

fy

y

y

y

()x y

r f

r

r f

r f

r

f

f

(LMCS, p. 300-302) IV.46

f

f

y

f

f

y

y

y

y

y y

f y

y

y

r f

r

r f

r f

r

f

f

NOT OPP-UNIFIABLE

Thus the clauses C′′,D′′ are not

opp–unifiable.

(LMCS p. 302-303) IV.47

Another Example

Now let

C′′(x, y, z) = {rfxfy, rfyfz}

D′′(x, y, z) = {¬ rxfy, ¬ rfyx}.

We want to analyze the unifiability of the

four literals:

rfxfy rfyfz rufv rfvu.

Applying the unification algorithm for literals:

(LMCS p. 302-303) IV.48

x f y

()

r y

v y

r z

r

r v

()

y

y f z

f

v u

v

r f

r f

r f

ur

x f

y f

v

fy

f

f

f

f

f

u f y

(LMCS p. 302-303) IV.49

r f y

r f z

r

r

f y

y x

f y

()

f x

yf

f

f y

y

r f

r f z

r f

r f

x

x

x

)(z x

x f

f

f

f

x

x

x

(LMCS p. 302-303) IV.50

r f x f

r f f

r f

r

f

f f

x

x

x

x

x

x

x

=
so

µ = ()

1

2

 z x

y x
z x

v x

z x

y x

y x

) v y y x) (((

µ =

µ =

 u f y)

x f x

u f x

Thus the clauses C′′,D′′ are opp–unifiable,

and the most general opp–unifier is given by

µ1, µ2.

(LMCS, p. 305) IV.51

Main Theorem

on

Resolution Theorem Proving

(J.A. Robinson 1965)

A set S of clauses is not satisfiable iff there

is a derivation of the empty clause by

resolution using only most general

opp-unifiers.

(LMCS, p. 308) IV.52

Handling Equality

We will handle equality (≈) by giving some of

its crucial properties stated as clauses, and

then proceed to treat it like any other binary

relation symbol.

So let S be a set of clauses in the language

L = R∪ F ∪ C with equality.

Let ≡ be a new binary relation symbol.

First, we give axioms for ≡ so it behaves

like equality.

It will be convenient to write s 6≡ t instead

of ¬ (s ≡ t).

(LMCS, p. 308) IV.53

Axiomatizing Equality

Let Ax≡ be the set of clauses given by

{x ≡ x}

{x 6≡ y, y ≡ x}

{x 6≡ y, y 6≡ z, x ≡ z}

{x1 6≡ y1, . . . , xn 6≡ yn, f~x ≡ f~y} f n–ary in F

{x1 6≡ y1, . . . , xn 6≡ yn, ¬ r~x, r~y} r n–ary in R.

A clause is a Horn clause if there is at most

one positive literal in the clause.

The clauses in Ax≡ are Horn clauses.

(LMCS, p. 309) IV.54

Example

For the language L = {f, r},

where f is unary and r is binary,

we can formulate Ax≡ as the five clauses

{x ≡ x}

{x 6≡ y, y ≡ x}

{x 6≡ y, y 6≡ z, x ≡ z}

{x 6≡ y, fx ≡ fy}

{x1 6≡ y1, x2 6≡ y2, ¬ rx1x2, ry1y2}.

(LMCS, p. 309) IV.55

To eliminate ≈ we introduce the following:

• Given a clause C:

Define the clause C≡ to be the result of

replacing ≈ in C with ≡.

• Given a set S of clauses:

Define the set S≡ of clauses to be the set of

C≡ for C ∈ S.

(LMCS, p. 312) IV.56

Theorem

A set S of clauses is not satisfiable

iff

the set of clauses S≡ ∪Ax≡ is not satisfiable

iff

there is a derivation of the empty clause by

resolution∗ from S≡ ∪Ax≡.

∗Using only most general opp-unifiers!

(LMCS, p. 308) IV.57

Equational Arguments and Clauses

Now we can adapt our work on clauses to

study equational arguments.

Theorem

An equational argument

S ∴ s ≈ t

(that is, S |= s ≈ t) is valid iff

¬Sat(S ∪ { s(~c) 6≈ t(~c) }),

where ~c is a sequence of constant symbols

that do not appear in the original argument.

(LMCS, p. 310-311) IV.58

Example

We will show

x · y ≈ x |= x · (y · z) ≈ (x · y) · z

using clause logic.

First translate the argument into the

nonsatisfiability of a set of clauses:

¬Sat({x · y ≈ x}, {a · (b · c) 6≈ (a · b) · c}).

We now want to replace the ≈ by ≡ .

(LMCS, p. 310-311) IV.59

The set S≡ ∪Ax≡ of clauses is:

{x · y ≡ x}

{a · (b · c) 6≡ (a · b) · c}

{x ≡ x}

{x 6≡ y, y ≡ x}

{x 6≡ y, y 6≡ z, x ≡ z}

{x1 6≡ y1, x2 6≡ y2, x1 · x2 ≡ y1 · y2}.

We want to show this set of clauses is not

satisfiable.

We can approach this two ways, via ground

instances or via resolution.

(LMCS, p. 310-311) IV.60

For the ground instances method consider

Clause Ground instances

{x · y ≡ x} {(a · b) · c ≡ a · b}

{a · b ≡ a}

{a · (b · c) ≡ a}

{a · (b · c) 6≡ (a · b) · c} {a · (b · c) 6≡ (a · b) · c}

{x 6≡ y, y ≡ x} {(a · b) · c 6≡ a, a ≡ (a · b) · c}

{x 6≡ y, y 6≡ z, x ≡ z} {(a · b) · c 6≡ a · b, a · b 6≡ a, (a · b) · c ≡ a}

{a · (b · c) 6≡ a, a 6≡ (a · b) · c,

a · (b · c) ≡ (a · b) · c}

(LMCS, p. 310-311) IV.61

Rename the (ground) atomic formulas:

P : (a · b) · c ≡ a · b

Q : a · b ≡ a

R : a · (b · c) ≡ a

S : (a · b) · c ≡ a

T : a ≡ (a · b) · c

U : a · (b · c) ≡ (a · b) · c,

The ground instances become

{P} {Q} {R} {¬U}

{¬S, T}

{¬P, ¬Q, S}

{¬R, ¬T, U}.

This collection of propositional clauses is

easily seen to be unsatisfiable.

(LMCS, p. 313) IV.62

And for the direct resolution method:

1. {x · y ≡ x} given

2. {a · (b · c) 6≡ (a · b) · c} given

3. {x 6≡ y, y ≡ x} given

4. {x 6≡ y, y 6≡ z, x ≡ z} given

5. {a · (b · c) 6≡ y, y 6≡ (a · b) · c} 2,4

6. {a 6≡ (a · b) · c} 1,5

7. {(a · b) · c 6≡ a} 3,6

8. {(a · b) · c 6≡ y, y 6≡ a} 4,7

9. {a · b 6≡ a} 1,8

10. { } 1,9.

