LECTURE SLIDES on

for

and

This set of lecture slides is a companion to the textbook

Logic for Mathematics and Computer Science

by Stanley Burris, Prentice Hall, 1998.

At the top of each slide one sees LMCS, referring to the textbook, usually with a page number to indicate the page of the text that (more or less) corresponds to the slide.

(LMCS, p. 5)

 ARISTOTLE (4th Century B.C.)

 ARISTOTLE (4th Century B.C.)}
I. 3

Invented Logic

All men are mortal. Socrates is a man.
\therefore Socrates is mor-
tal.

Some students are clever. Some clever people are lazy.
\therefore Some students are Iazy.

The four kinds of statements permitted in the categorical syllogisms of Aristotle.

A All S is P.
E No S is P.
I Some S is P.
O Some S is not P. particular negative

Syllogisms

Syllogisms are 3 line arguments:

$$
\begin{array}{lll}
\text { Major Premiss } & -\square-\square & \text { (Use } P \text { and } M) \\
\text { Minor Premiss } & -\square-\square & \text { (Use } S \text { and } M \text {) }
\end{array}
$$

Conclusion $\quad-S-P$

Actually you can write the premisses in any order.

The major premiss is the one with the predicate of the conclusion.

The minor premiss is the one with the subject of the conclusion.
(LMCS, pp. 5-6)

Now there are $2 \times 2 \times 2 \times 1=8$ possibilities for the major premiss $-\square-\square$
and likewise 8 possibilities for the minor premiss - $\square-\square$
but just $2 \times 2=4$ possibilities for the conclusion $-S-P$

So there are 256 different syllogisms.

A main goal of Aristotelian logic was to determine the valid categorical syllogisms.

Classification of Syllogisms

The mood XYZ of a syllogism is the AEIO classification of the three statments in a syllogism, where the first letter X refers to the major premiss, etc.

For example the syllogism

All students are clever.
No clever people are lazy.
\therefore No students are lazy.
has the mood EAE.

There are $\mathbf{6 4}$ distinct moods.

The figure of a syllogism refers to whether or not the middle term M comes first or second in each of the premisses.

The four figures for syllogisms:

1st Figure
$-M$ - P
$-P-M$
$-S-M$
$-S-P$
$-S-M$
$-S-P$

3rd Figure
4th Figure
$-M$ - P
$-P-M$
$-M-S$
$-M-S$
$-S-P$

Venn Diagrams for A, E, I, O statements:

SHADED regions have NO ELEMENTS in them.

[Note: the shading for the Venn diagram for A is not correct in the textbook - this mistake occurred when, shortly before going to press, all the figures in the text needed to be redrawn with heavier lines. For a few other items that need to be changed see the Errata sheet on the web site. - S.B.]
(LMCS, pp. 6-7)

The first figure AAI syllogism:

All M is P.
All S is M.
\therefore Some S is P.

This is not a valid syllogism by modern standards, for consider the example:

All animals are mobile.
Unicorns are animals.
\therefore Some unicorns are mobile.
[In this case modern means subsequent to C.S. Peirce's paper of 1880 called "The Algebra of Logic" .]

But by Aristotle's standards the first figure AAI syllogism is valid:

All M is P.
All S is M.
\therefore Some S is P.

The previous example about unicorns would not be considered by Aristotle.

After all, why argue about something that doesn't even exist.

Some M is P. Some M is S.
\therefore Some S is P.

There are two situations to consider:

The second diagram gives a
counterexample. This is not a valid syllogism. To be a valid syllogism the conclusion must be true in all cases that make the premisses true.

The Valid Syllogisms

\square means we assume the classes S, P, M are not empty.
(LMCS, pp. 10-11)

George Boole (1815-1864)

Boole's Key Idea: Use Equations

For the universal statements:

The statement	becomes the equation
All S is P.	$S \cap P^{\prime}=0$ or just $S P^{\prime}=0$.
No S is P.	$S \cap P=0 \quad$ or just $S P=0$.

Boole also had equations for the particular statements. But by the end of the 1800s they were considered a bad idea.

Example

The first figure AAA syllogism
All M is P.
All S is M.
\therefore All S is P.
becomes the equational argument

$$
\begin{aligned}
M P^{\prime} & =0 \\
S M^{\prime} & =0 \\
\therefore S P^{\prime} & =0
\end{aligned}
$$

(LMCS, p. 10-11)

We see that the equational argument (about classes)

$$
M P^{\prime}=0, \quad S M^{\prime}=0 \quad \therefore S P^{\prime}=0
$$

is correct as

$$
\begin{aligned}
S P^{\prime} & =S 1 P^{\prime} \\
& =S\left(M \cup M^{\prime}\right) P^{\prime} \\
& =S M P^{\prime} \cup S M^{\prime} P^{\prime} \\
& =0 \cup 0 \\
& =0 .
\end{aligned}
$$

For equational arguments you can use the fundamental identities.

Fundamental Identities

for the Calculus of Classes

1.

$X \cup X=X$
2.
3.
$X \cup Y=Y \cup X$
4.
$X \cap Y=Y \cap X$
5. $X \cup(Y \cup Z)=(X \cup Y) \cup Z$
6. $X \cap(Y \cap Z)=(X \cap Y) \cap Z$
7. $X \cap(X \cup Y)=X$
8. $X \cup(X \cap Y)=X$
idempotent
idempotent
commutative
commutative
associative
associative
absorption
absorption
(LMCS, p. 12)
I. 18
9. $X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z) \quad$ distributive 10. $X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)$ distributive 11. $X \cup X^{\prime}=1$
12. $X \cap X^{\prime}=0$
13. $\quad X^{\prime \prime}=X$
14. $X \cup 1=1$
15.
$X \cap 1=X$
16.
$X \cup 0=X$
17.
$X \cap 0=0$
18.

$$
(X \cup Y)^{\prime}=X^{\prime} \cap Y^{\prime}
$$

De Morgan's law
19.

$$
(X \cap Y)^{\prime}=X^{\prime} \cup Y^{\prime}
$$

De Morgan's Iaw.

Boole applied the algebra of equations to arguments with many premisses, and many variables, leading to:

- Many Equations with Many Variables

$$
\begin{aligned}
F_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right) & =0 \\
& \vdots \\
F_{k}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right) & =0 \\
\therefore F\left(B_{1}, \ldots, B_{n}\right) & =0 .
\end{aligned}
$$

Boole's work marks the end of the focus on Aristotle's syllogisms, and the beginning of Mathematical Logic.

Chapter 1 of LMCS gives four different methods for analyzing such equational arguments:

- Fundamental Identities
for algebraic manipulations
- Venn Diagrams
- The Elimination Method of Boole
- The Tree Method of Lewis Carroll

Venn Diagrams

subdivide the plane into connected constituents.

is not a Venn diagram.

Venn's Venn Diagrams

Two Classes

Four Classes

Three Classes

Five Classes

Venn's Construction for 6 Regions*

Draw the three circles first, then add: (4) the blue region, (5) the red region, and finally
(6) the green region.
(This can be continued for any number of regions.)
*This diagram is courtesy of Frank Ruskey from his Survey of Venn Diagrams:
www.combinatorics.org/Surveys/ds5/VennEJC.html

> Draw the perpendicular lines and the circle first.
> Then follow the circle with: (4) the blue region, (5) the red region, and (6) the green region. Join the endpoints of the perpendicular lines to make closed regions.

*This diagram is courtesy of Frank Ruskey from his Survey of Venn Diagrams: www.combinatorics.org/Surveys/ds5/VennEJC.html

A Symmetric Venn Diagram*

Venn diagrams

with n regions that admit a symmetry of rotation by $2 \pi / n$ are symmetric.

This can hold only if the regions are congruent and n is prime. Such are known for
$n=2,3,5,7$, but not for $n \geq 11$.
*This diagram, using 5 congruent ellipses, is courtesy of Frank Ruskey from his Survey of Venn Diagrams: www.combinatorics.org/Surveys/ds5/VennEJC.html

Simplification of the Premisses

(Useful before shading a Venn diagram.)

Write each premiss as a union of intersections of classes or their complements.

Then put each of the intersections equal to 0 .

Example

Express the premiss $A\left(B^{\prime} C\right)^{\prime}=0$ as

$$
A B \cup A C^{\prime}=0
$$

and then break this up into:

$$
A B=0 \quad \text { and } \quad A C^{\prime}=0
$$

Example

Given $(A C \cup B)\left(A B^{\prime} \cup C^{\prime}\right)=0$,
for the Venn diagram first simplify this to

$$
A B^{\prime} C=0 \text { and } B C^{\prime}=0
$$

Now proceed to shade the intersections $A B^{\prime} C$ and $B C^{\prime}$:

Two methods for such simplification:

- Use Fundamental Identities
(We have already discussed this.)
- Boole's Expansion Theorem

For two variables A, B this looks like:

$$
\begin{aligned}
F(A, B)= & F(1,1) A B \cup F(1,0) A B^{\prime} \\
& \cup F(0,1) A^{\prime} B \cup F(0,0) A^{\prime} B^{\prime}
\end{aligned}
$$

or just expanding on A gives

$$
F(A, B)=F(1, B) A \cup F(0, B) A^{\prime}
$$

Example

For $F(A, B)=\left(A^{\prime} \cap B\right)^{\prime}$

$$
\begin{aligned}
& F(1,1)=\left(1^{\prime} \cap 1\right)^{\prime}=1 \\
& F(1,0)=\left(1^{\prime} \cap 0\right)^{\prime}=1 \\
& F(0,1)=\left(0^{\prime} \cap 1\right)^{\prime}=0 \\
& F(0,0)=\left(0^{\prime} \cap 0\right)^{\prime}=1
\end{aligned}
$$

Thus

$$
F(A, B)=A B \cup A B^{\prime} \cup A^{\prime} B^{\prime} .
$$

(LMCS, p. 26)

Reducing the Number of Premiss Equations to One

One can replace the premiss equations

$$
\begin{gathered}
F_{1}=0 \\
\vdots \\
F_{k}=0
\end{gathered}
$$

by the single equation

$$
F_{1} \cup \ldots \cup F_{k}=0
$$

This follows from the fact that $A \cup B=0$ holds iff $A=0$ and $B=0$ hold.

Example

The two premisses

$$
\begin{aligned}
A\left(B^{\prime} C\right)^{\prime} & =0 \\
(A \cup B) C^{\prime} & =0
\end{aligned}
$$

become

$$
\left(A\left(B^{\prime} C\right)^{\prime}\right) \cup\left((A \cup B) C^{\prime}\right)=0
$$

Boole's Main Result

The Elimination Theorem

Given the single premiss

$$
E\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)=0
$$

what is the most general conclusion

$$
F\left(B_{1}, \ldots, B_{n}\right)=0
$$

involving only the classes B_{1}, \ldots, B_{n} ?

Answer: F is the intersection of instances of E obtained by putting 0 s and 1 s in for the A_{i}, in all possible ways. So F is:
$E\left(0, \ldots, 0, B_{1}, \ldots, B_{n}\right) \cdots E\left(1, \ldots, 1, B_{1}, \ldots, B_{n}\right)$

Example

Find the most general conclusion involving only P and S that follows from

$$
P Q^{\prime}=0 \quad Q R^{\prime}=0 \quad R S^{\prime}=0
$$

First collapse the premisses into a single premiss $E=0$ by setting

$$
E(P, Q, R, S)=P Q^{\prime} \cup Q R^{\prime} \cup R S^{\prime}
$$

The most general conclusion for P and S is
$E(P, 0,0, S) E(P, 0,1, S) E(P, 1,0, S) E(P, 1,1, S)=0$.

This is $P\left(P \cup S^{\prime}\right) 1 S^{\prime}=0$, and simplifies to $P S^{\prime}=0$.
(LMCS, p. 17,18)
I. 34

Lewis Carroll's TREE METHOD

Showing $F=0$ reduces to showing

$$
F X=0 \text { and } F X^{\prime}=0
$$

since

$$
F=F X \cup F X^{\prime} .
$$

To show a conclusion $F=0$ is valid simply build an (upside down) tree
starting with the conclusion
with each branch multiplying out to 0 .
(LMCS, p. 17,18)
I. 35

Example

To show that 1. $P Q^{\prime}=0$ is valid:
2. $Q R^{\prime}=0$
3. $R S^{\prime}=0$
$\therefore P S^{\prime}=0$

(LMCS, pp. 16-18)

Translating the lengthy argument in Example 1.3.4 into equations:

1. Good-natured tenured
mathematics professors are dynamic.

$$
A B C \subseteq D \quad \text { or } A B C D^{\prime}=0
$$

2. Grumpy student advisors
play slot machines.

$$
A^{\prime} M \subseteq L \quad \text { or } \quad A^{\prime} M L^{\prime}=0
$$

Etc.

A Naive Approach to

$\therefore M F=0$

(LMCS, p. 18)

I. 38

A Smart Approach

1. $A B C D^{\prime}=0 \mid 2$
2. $G M C^{\prime}=0$ 5. $\quad B^{\prime} F H=0 \quad$ 6. $\quad D^{\prime} B E G^{\prime}=0$
3. $M I^{\prime} J^{\prime}=0$ 8. $H M K^{\prime}=0$ 9. $K J L^{\prime} E^{\prime}=0$
4. $H^{\prime} F L^{\prime}=0$ 11. $M L F=0$ 12. $K I A E^{\prime}=0$
$\therefore M F=0$

