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Abstract. Boole’s numerical algebra approach to creating an Al-

gebra of Logic was mysterious, in particular because of its use of

uninterpretable terms and an undefined division. Nonetheless his

system gave correct results. Just a decade after the appearance

in 1854 of Boole’s Laws of Thought, Jevons published an alternate

approach that was basically modern Boolean Algebra. Boole’s ap-

proach was abandoned. It was not until 1976 that Boole’s nu-

merical algebra approach was given an acceptable modern foun-

dation, namely Hailperin embedded Boole’s system in a certain

first-order logic of rings with variables that range over idempotent

elements. The goal of this note is to give a compact presentation

of Hailperin’s results using the familiar 1-sorted first-order logic.

1. First-order ring axioms for Boole’s algebra of logic

A non-trivial torsion-free commutative ring with unity is an algebraic

structure R “ xR,`, ¨,´, 0, 1y with two binary operations addition (`)

and multiplication (¨), a unary operation minus (´), and two constants

0, 1 such that the following collection H of axioms hold:1

1 ‰ 0

p@xq rnx “ 0 Ñ x “ 0 s for n “ 1, 2, . . .

p@x, yq rx` y “ y ` x s p@x, yq rx ¨ y “ y ¨ x s

p@x, y, zq rx` py ` zq “ px` yq ` z s p@x, y, zq rx ¨ py ¨ zq “ px ¨ yq ¨ z s

p@xq rx` 0 “ x s p@xq rx ¨ 1 “ x s

p@xq rx` p´xq “ 0 s

p@x, y, zq rx ¨ py ` zq “ x ¨ y ` x ¨ z s

Date: May 19, 2024.
1H is to remind us that these axioms are only a modification of those presented

by Theodore Hailperin [7].
1
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Models of H will be called H-rings, the best known example being

of course the ring of integers Z. The torsion-free property ensures that

every H-ring has a copy of Z in it, namely the subring generated by 1.

2. Idempotent elements of the H-rings ZU and Boole’s

partial algebra models

The H-rings ZU of functions2 from U to Z, for U ‰ Ø, play a leading

role in Hailperin’s justification of Boole’s work. This is for the following

reason: the idempotent elements of ZU are precisely the characteristic

functions3 χA for A Ď U , and for A,B Ď U they satisfy

‚ χA ¨ χB “ χAXB
‚ χA ` χB “ χAYB provided A X B “ Ø; otherwise χA ` χB is

not idempotent

‚ χA ´ χB “ χArB provided B Ď A; otherwise χA ´ χB is not

idempotent.

This corresponds precisely to Boole’s model for a given universe U ,

namely for A,B Ď U

‚ A ¨B “ AXB

‚ A ` B “ AYB provided A X B “ Ø; otherwise A ` B is not

interpretable

‚ A ´ B “ ArB provided B Ď A; otherwise A ´ B is not

interpretable.

3. Relativizing quantifiers to idempotent elements

For ϕ a first-order formula ϕE means the quantifiers are relativized

to idempotent elements, that is, ϕE is defined recursively as follows:

‚ ϕE “ ϕ if ϕ is an atomic formula;

‚ r ϕsE “  rϕEs ;

‚
`

ϕ1 lϕ2

˘

E
“ pϕ1qE l pϕ2qE for l a binary propositional con-

nective;

‚ rp@xqϕsE “ p@xqr px
2 “ xq Ñ ϕEs;

‚ rpDxqϕsE “ pDxqr px
2 “ xq&ϕEs.

2Halperin called these functions signed multisets.
3In 1933 Hassler Whitney [13] translated the modern Boolean algebra of sets

into the algebra of numbers using characteristic functions.
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Unlike Boole’s system, H has no axiom stating that variables are

idempotent.4 Instead, Boole’s results, when formulated for H-rings,

take the form

H $ ψE

for ψ a first-order sentence. For the case that such a ψ has the form

p@~xqϕp~xq the assertion H $ ψE takes the form

H $ p@~xqrIp~xq Ñ ϕp~xqEs,

or equivalently,

H, Ip~xq $ ϕp~xqE,

where

‚ ~x is x1, . . . , xn,

‚ p@~xq means p@x1q ¨ ¨ ¨ p@xnq,

‚ Ip~xq is px21 “ x1q& ¨ ¨ ¨ & px2n “ xnq.

When dealing with a quantifier-free formula ωp~xq, for example as in

equational logic, note that ωp~xqE is just ωp~xq, and H, Ip~xq $ ωp~xq can

be viewed as using Boole’s axiom that variables are idempotent.

4. Boole’s main results

Items (1) through (12) below enumerate the main definitions and

results from Boole’s Algebra of Logic, expressed in the first-order logic

of H-rings. Item (13) is a strong version of Boole’s Rule of 0 and 1.

(1) Definition A term tp~xq is E-idempotent if

H, Ip~xq $ tp~xq2 “ tp~xq.

Simple examples of E-idempotent terms (written as polynomi-

als) are

0, 1, x, 1´ x, xy, x` y ´ xy, x` y ´ 2xy.

x` y and x´ y are not E-idempotent.

4Boole did not state that his law x2 “ x only applied to variables; this only

becomes evident when Boole points out that certain terms are not idempotent.
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(2) Definition The constituents of a list ~x of variables are the terms

Cσp~xq, where σ is a sequence of 0s and 1s of the same length as

~x, defined by

Cσp~xq–
ź

i

Cσipxiq

where C1pxq– x and C0pxq– 1´ x.

For example, C1101px1, x2, x3, x4q is x1x2p1´ x3qx4.

(3) Constituents are E-idempotent

H, Ip~xq $ Cσp~xq
2
“ Cσp~xq.

(4) Constituents are E-pairwise disjoint

H, Ip~xq $ Cσp~xq ¨ Cτ p~xq “ 0 for σ ‰ τ.

(5) Constituents E-sum to 1

H, Ip~xq $
ÿ

σ

Cσp~xq “ 1.

(6) Value of Cσpτq

H $ Cσpσq “ 1, H $ Cσpτq “ 0 if σ ‰ τ.

(7) Expansion (or Development) Theorem

H, Ip~x, ~yq $ tp~x, ~yq “
ÿ

σ

tpσ, ~yq ¨ Cσp~xq.

The complete expansion of a term tp~xq is given by

H, Ip~xq $ tp~xq “
ÿ

σ

tpσq ¨ Cσp~xq.

In this case the coefficients tpσq are integers.

(8) Definition For tp~xq a term let

t‹p~xq–
ÿ

σ : tpσq‰0

Cσp~xq.

(9) Properties of t‹p~xq

‚ t‹p~xq is E-idempotent.

‚ If tp~xq is E-idempotent then H, Ip~xq $ t‹p~xq “ tp~xq.

‚ H, Ip~xq $ tp~xq “ 0 Ø t‹p~xq “ 0.

‚ H, Ip~xq $ rsp~xq ¨ tp~xqs‹ “ sp~xq‹ ¨ tp~xq‹.
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(10) Reduction Theorem

H, Ip~xq $
ľ

i

“

tip~xq “ 0
‰

Ø
ÿ

i

tip~xq
2
“ 0.

(11) Elimination Theorem

H, Ip~xq $ pD~yq
“

Ip~yq& tp~x, ~yq “ 0
‰

Ø
ź

τ

tp~x, τq “ 0.

If ~y is a single variable y then one has

H, Ip~xq $ pDyq
“

Ipyq& tp~x, yq “ 0
‰

Ø tp~x, 1q ¨ tp~x, 0q “ 0.

(12) Solution Theorem

H, Ip~x, yq $ tp~x, yq “ 0 Ø

´

tp~x, 1q ¨ tp~x, 0q “ 0

& pDvq
“

Ipvq& y “ t‹p~x, 0q ` v ¨ t‹p~x, 0q ¨ t‹p~x, 1q
‰

¯

.

where t‹p~x, iq is 1´ t‹p~x, iq for i “ 0, 1.

Applying the Expansion Theorem to the terms in the right

side of the iff symbol in the Solution Theorem gives a version

of the Solution Theorem used by Boole, namely in terms of

constituents:

H, Ip~x, yq $ tp~x, yq “ 0 Ø

”

ÿ

σPJIND

Cσp~xq “ 0

& pDvq
´

Ipvq & y “
ÿ

σPJ1

Cσp~xq ` v ¨
ÿ

σPJ0{0

Cσp~xq
¯ ı

,

where

JIND –
 

σ : t‹pσ, 1q “ t‹pσ, 0q “ 1
(

“
 

σ : tpσ, 1q ‰ 0, tpσ, 0q ‰ 0
(

J1 –
 

σ : t‹pσ, 1q “ 0, t‹pσ, 0q “ 1
(

“
 

σ : tpσ, 1q “ 0, tpσ, 0q ‰ 0
(

J0{0 –
 

σ : t‹pσ, 1q “ t‹pσ, 0q “ 0
(

“
 

σ : tpσ, 1q “ 0, tpσ, 0q “ 0
(

.

(13) Rule of 0 and 1 (See [6])

For ϕ a Horn sentence one has

H $ ϕE iff Z |ù ϕE.
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5. Observations and useful facts

5.1. Regarding the axioms H. The only axioms from H that Boole

explicitly listed were the commutative and distributive laws—his dis-

tributive laws included x ¨ py ´ zq “ x ¨ y ´ x ¨ z. He also included, in

a round-about way, the axioms x` 0 “ x and x ¨ 1 “ x. Of course his

most famous axiom was x2 “ x, which is not included in H.

Boole used the property

nCσp~xq “ 0 implies Cσp~xq “ 0 for n “ 1, 2, . . .

without explicitly saying where it came from—it is a consequence of

his Rule of 0 and 1. This is the source of the torsion-free property, a

property that I suspect many did not realize applied to Boole’s Algebra.

5.2. Regarding the embedding of Boole’s model in ZU . The

fundamental operation minus is a unary operation in rings, but Boole

had important reasons for working with the binary subtraction, namely

to express the complement of A by the totally defined term 1´A. It is

not possible to express the complement in Boole’s model by a totally

defined term if one replaces subtraction with the unary minus because

´A would only be defined for A “ Ø.

5.3. Regarding E-idempotents. Suppose sp~xq and tp~xq are E-idempotents.

Then

‚ sp~xq ¨ tp~xq is an E-idempotent;

‚ sp~xq ` tp~xq is an E-idempotent iff H, Ip~xq $ sp~xq ¨ tp~xq “ 0.

‚ tp~xq ´ sp~xq is an E-idempotent iff H, Ip~xq $ sp~xq ¨ tp~xq “ sp~xq.

5.4. Regarding Properties of t‹. The third property allowed Boole

to claim that every equation was equivalent to a totally interpretable

equation.

5.5. Regarding the Reduction Theorem. This allowed Boole to

reduce a finite collection of equations to a single equation. Thus the

Elimination and Solution Theorems could be applied to a collection of

equations.

5.6. Regarding the Solution Theorem. The first version of the

Solution Theorem given here, adapted to modern Boolean Algebra,

can be found in Ernst Schröder’s 1877 work [11].
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5.7. Regarding the Rule of 0 and 1. For R an H-ring let RE be

the subring of R generated by the idempotent elements. Of course

ZE “ Z. An easy observation is that for a sentence ϕ one has R |ù ϕE
iff RE |ù ϕE. Now it is known ([10], [12]) that each RE is isomorphic to

a bounded Boolean power of Z. Furthermore, bounded Boolean powers

preserve Horn sentences.

Thus by the completeness theorem for first-order logic it follows that

for a Horn sentence ϕ, H $ ϕE iff Z |ù ϕE, that is, iff ϕ holds in Z

when the variables are restricted to the two idempotents 0, 1.

Each result in (3) through (12) can be expressed as H $ ϕE where ϕ

is logically equivalent to a Horn sentence, and thus ϕE is also logically

equivalent to a Horn sentence. Then to prove H $ ϕE it suffices to

show that Z |ù ϕE. (This is the essence of the proof of Boole’s results

given in [6].)
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