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BOOLE’S CHAPTER XV: SYLLOGISM DETAILS

STANLEY BURRIS

ABSTRACT. In Boole’s famous 1854 book The Laws of Thought the mathematical analysis of Aris-
totelian logic was relegated to Chapter XV, the last chapter before his treatment of probability
theory. This chapter is Boole’s tour de force to show that he had a uniform method to obtain all
valid syllogisms in his version of Aristotelian logic, namely he applied reduction, elimination and
solution in that order to equational expressions for the premises. The premises of a syllogism were
expressed as a pair of equations in 7 variables, but then all algebraic steps between this and the final
expressions for x, vz and 1 — x were omitted. The somewhat tedious details of those missing steps
are given in this note. It is assumed that the reader is familiar with Boole’s reduction, elimination

and solution theorems.

1. BOOLE’S TWO PAIRS OF EQUATIONS

In LT [B] (The Laws of Thought), pp. 232-236, in order to justify the simple rules describing
valid syllogisms that were stated in his 1848 paper [2], Boole presented three solutions

x = fi(v,v,w,w)z+ folv, v, w,w)(1 - 2)
ve = g1(v,v,w,w)z + go(v, v, w,w)(1 — 2)
1—2z = h(v,v,w,w)z~+ ho(v, v, w,w)(1 - 2)

for each of the two pairs of equations

vr = vy " ve = vy
wz = wy wz = w(l—y),
after eliminating y.

By independently substituting 1 — « for z, 1 — y for y and 1 — 2z for z in I and II, carrying the
substitutions over to the three solutions, Boole said that one would have the equational expressions
for all possible arguments with categorical premises. However each of the three conclusions obtained
by solution would not correspond to a categorical proposition unless either the coefficient of z or
the coefficient of 1 — z vanished.

In order for these equational arguments to be applicable to the determination of valid syllogisms
he needed, in each of the three solutions in each of the two cases, to find all permissible substitutions
of 1 for some of the variables v,v’,w,w’ such that the coefficient of z or the coefficient of 1 — 2
would be 0. By a permissible substitution is meant one where not both v, " nor both w,w’ could
be 1.
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2. THE DETAILS

2.1. Detalils for case I. Given the two equations
v = vy (1)
wz = wy, (2)

reduce the system to a single equation R(z,y, z,v,v",w,w’) = 0 where

R(z,y,z,v,0 ,w,w') = (vr —v'y)* + (wz —w'y)?. (3)
Eliminating y from R = 0 yields E(z, z,v,v",w,w") = 0 where
E(x,z,v,v ,w,w') = R(z,1,z,0,v,w,w)R(z,0,zv,0,ww)
= ((m: —")? + (wz — w’)2) (vx + wz). (4)

The goal is to solve £ = 0 for z, for 1 — x and for vz.
2.2. Solving for z. To solve E' = 0 for z, first express E in the form Ejz+ Ey(1 —x) by expanding
it about z:
E(x,z,v,v" ,w,w)

EQ, 20,0, w0z + B0, 20,0, w,0)(1 — z)
< v— ')+ (wz — w')2>(v + wz)>:1: + ((v +(we — w')2)wz> (1 - ).

From Eix + Ep(1 — ) = 0 one has (Ey — Fy)z = Ey, and thus one has the solution

E(0, z,v,v ,w,w)
E(07 z,v,v’,w,w’) - E(lv Z7U7U/7w7w/)

(v’ + (wz — w’)Q)wz
(v’ + (wz — w’)z)wz - <(v — )2 + (wz — w’)z) (v+ wz)'

Now expand the right side of (B]) into a linear combination of constituents using the following

Tr =

(5)

table—this is Boole’s method of SolutlonEl

IThe coefficient 0 /0 represents an indefinite class. oo is used as the value of any coefficient not in the form 0/b or

b/b—DBoole preferred to use 1/0 instead of the symbol oco.
The sum of the constituents with coefficient oo set equal to 0 gives the expansion of the constraint equation

By - Ey =1.



Constituent
(=2 (=) (1) (l—w) (1—u)

1-2)-1-v)-(1-2)-(1—-w)- -

Coeff Value

w w

0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/1
0/2
0/1
0/2
0/0
0/1
0/0
0/1
0/0
0/0
~1/0

(I—-2)-1=v)-(1-=2) w-(1l-w)

1—2)-1-=v)-1-=2") w-uw

1—2)-(1-v)-v-1-w)-(1—-w)

(I-2)-1=-v)-v -1-w) w

1—2)-1-v)-v w-(1-w)
1—2)-(1-v)-v w-w

1—2)-v-1-2)1-w) -(1—-w)
l—2)-v-1-2)(1-w) v
l—z)-v-1=v) w-(1-w)

l1—2)-v-(1-2) w-w

1

0

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

l1—2)-v-v - 1—w) (1-w)
l1—2)-v-v-1—-w) v
1—=z2)-v-v w-(1-w)

1—2)-v-v w-w

0/0

1

0

0/0

1

0

z-(1=v)-(1=v)-1—-w) (1-w)
z-(l—=w)-(1=2")-(1-w) -
z-(1=v)-(1 =) w-(1—-w)

z-(1=0v)-1=0) w-u

0/0
0/0

0/0
0/0
0/0

0

1

0/0
0/0
0/0
~2/0
~1/0

z-(1—=v)- v -(1—-w)-(1—-w)
z-(1=v)- v -(1—-w)- v
z-(l=w)- v w-(1—-uw)

z-(1—=v)- v w-w

22.

o0

0
1

1
1

23.
24.
25.

o0

z-ov-(1=2)-(1—-w)-(1—-w)
z-ov-(1=2)-(1—-w)- -w
zev- (=) w-(1—w)

zev- (1= w-w

0/1
0/2
~1/3

26.
27.
28.
29.
30.
31.

o0

0

1

0/2

0/0

0/1
~2/0
—1/-1

z-v-v - (1—w)-(1—w)

zov-v - (1—w)-w

0/0

zov-vwe (1 —w')

o0

1

0
1

1

cw - w'

. v/
Case I: Table for Equation (&)

v

32.



The solution for x is that it equals the sum of the coefficient x constituent for which the coefficient

is 1 or 0/0. The same comment applies to the subsequent solutions for 1 — z and vz.

Here is the expansion of (@) in the form fi (v, v, w,w")z+ fo(v, v, w, w")(1—2), where the numbers

in parentheses (1),...,(32) give the row numbers for the constituents included in the expression for

. Next underbraces show which constituents give the indicated term. x, z and 1 — z are displayed

in boldface to assist the reader in parsing the expressions.

r =

+

((32) + g ((17) + (18) + (20) + (21) + (22) + (29)) >z

%((1) ek (8) 4+ (13) + (15) ) (1 - 2)

<m/ww' + %((1 —v)(1 =0 wuw’ + 1 —v)(1—-w) + v'(1—w)(l- w')))z

(32) (20) (17)+(18)+(21)+(22) (29)
9( (1-v) + vv'(l—w'))(l—z)
0 N——" N———

(1)++(8) (13)+(15)

(m}/ww/ + g((l —v)(1 =) ww + (1 —-v)(1—w) + v'(1 —w)(1— u/)))z

(-0 4w -w))a-2) (6)

‘Formula (@) is Boole’s (I.) on p. 233 of LT. ‘

2.3. Solving for 1 —z. From Ejyz + Ey(1 —x) = 0 one has (E} — Ep)(1 — x) = Ej, thus

E]. / /
1—117 _ ( ,Z,'U,'U,w,’u))

EQ1,z,v,v ,w,w') — E(0,z,v,v", w,w")
((v — V)% 4 (wz — w’)2) (v+wz)

((v —v)? 4 (wz — w’)2) (v+wz) — (v’ + (wz — w’)2)wz

so construct the table for (7))



Constituent

I—-2)-1-v)-1-2)-1-w)-(1-w)

1-2)-1-v)-(1=2")-(1-w)-

w w  Coeff Value
0 0/0

0
0
1

0/0
0/0
0/0
0/0
0/0
0/0
0/0
0/0

0 0 O

0/0
0 0/0

1

0 0 O

(I-2)-1-v)-(1=2) w-(l-w)

(I—-2)-1-=0v)- 1= w-w

0

0

0/0
0 0/0

l-=2)-1-v)-v-1-w)-(1—-w)

l-2)-1-v)-v -1-w) v

0
0
1

1

0
0
0

0/0
0 0/0

1

(1-2)-1-v)-v w-(1-w)

1-2)-(1-=v)-v w-w

1

0/0

I-2)-v-1=2)-1-w) - (1—-w)
1=2)-v-1=7)- 1-w) w
l=2)-v-1=v) w-(1-w)

1-2)-v- 1= w-w

0

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

(I—=2)-v-v-1—=—w) (1-w)
1-2)-v-v-1—-w) w
(I=2)-v-v -w-(1-w)

1—2)v-v w-w

0 0/0 0/0

1 1 0

1
1

0
0
0

0 0/0 0/0

1

1

z-(1=v)-(1=2")-(1-w)-(1—-w)

z-(1=v)-(1=2")-(1—-w) -
z-(1—=wv)-(1=2") w-(1—-w)

0 0/0 0/0
0/0
z-(1=v)- (1= w-u

0
0

1 0 0

0/0
1/0
0/0
0 0/0

1 0 0
1
1

0/0
0/0
0/0

0
0
0

1 1
0

0
1

z-(1=w)-v-(1-w) - (1—-w)
z-(1=w)-v-(1—w)- -w
z-(1—=w)- v w-(1—-w)

z-(l—=w)- v w-w

0/0
2/0
1/0

22.

o0

1
1

23.
24.
25.

o0

zov-(1=2)-(1—-w)-(1—-w)
zov-(1=2")-(1—w)- -w
zev-(1=2") w-(1—-w)

z-ov-(1=0") w-w

26.

27. 1 1 0 4/3 00

28.
29.

0 0/0 0/0 z-v-v-(1—-w) (1—w)
z-v-v - (1—w)-w

0

30.

zov-vw- (1 —w')

o0

0

2/0

0
1

1

1

31.

cw - w

z-v-v

0/-1
Case I: Table for Equation ()

1

32.



Abbreviating the term v'(1 — w) 4 (1 — v")w by v’ Aw, the table gives

1-z = [(25) +(26) + (28) + (30) + g((m +(18) + (20) + (21) + (22) + (29))]2

+ [(9) + (10) + (11) + (12) + (14) + (16)

+ % ((1) +2)+@B)+ @)+ B)+(7)+(13) + (15))] 1-2)

= [v(l ) (1 —w) + v’ (Vv Aw)

(25)+(26) (28)+(30)
n 9( (1 B 1_ _ o / 11 o
; v)(1—w) (1—-0v)(1—-v)ww + v'(1—-w)(1—-u') )|z
(17)+(18)+(21)+(22) (20) (29)
+ [v(l—v’) + w'w + 9( (1—v) +UU/(1—U’/)>](1_2)
@)+-+(12)  (14)+(16) (D+-+(8)  (13)+(15)

= [v(l — )1 —w) + vw' (v Aw)

+ g((l —v)(1—w)+ (1 —=v)(1—=2)ww + v'(1—-w)(l— w'))]z
+ [v(l—v’) oo+ %((1_v) + vv’(l—w’))](l—z). (8)

‘Formula [@®) is Boole’s (I1.) on p. 233 of LT‘ except for the red colored items: the term v(1 — v')

is completely missing, and in the next term the v’ in LT is given as (1 — w).

2.4. Solving for vx. Multiplying (@) by v gives

v = (vv'ww' + g v’ (1 —w)(1 — w'))z + g vo'(1—w)(1 - 2). (9)

‘Formula @) is Boole’s (I11.) on p. 233 of LT ‘ except that Boole omitted the v’ indicated in red.




2.5. Summary of Solutions for Case I.

r = [vv/ww/ + g((l —0)(1 = )ww + (1 -v)(1—w) + v'(1—-w)(l— w/))]z
4 g(u —0) + /(- w))(1-2) (10)
1-2 = [v(l — (1= w) + vw' (v Aw)
+ %((1 —0)(1—w)+ (1—2)(1—)ww + v'(1—w)(l— w'))]z
+ [’v(l—v’) + vo'w + g((l—v)—i—vv’(l—w’))](l—z). (11)
vr = <m/ww/ + g<m/(1 —w)(1— w')))z + %(v V(1 - w/))(l —2). (12)

We consider each of the equations (I0)—(I2]) above in turn—the errors in LT noted in red type
do not affect the conclusions Boole derived regarding valid syllogisms.

e For (I0) the coefficient of z cannot be made to vanish using permissible substitutions of 1

for v, v, w,w’. To make the coefficient of 1 — z vanish one needs to assign v = w’ = 1. Then

(IQ) reduces to x = v'wz.

e For () the only possibility is v = w = 1 since one cannot force the coefficient of 1 — z to
be 0 with a permissible substitution. Then (Il reduces to

1—z= (vu/ + g(l—vw'))(l—z).

e For (I2) one must set w’ = 1, and then (IZ)) reduces va = vv'wz. One can additionally set

v =1, reducing [I2)) to vz = vwz.



2.6. Detalils for Case II. Given the two equations

ve = 'y (13)
wz = w'(l—y) (14)
reduce the system to a single equation R(z,y, z,v,v,w,w’) = 0 where
R(z,y, z,v,0 ,w,w') = (vz—v'y)*+ (wz —w'(1— y)>2 (15)
Eliminating y from R = 0 yields E(z, z,v,v",w,w") = 0 where
E(x,z,v,0 w,w') = R(x,1,2z,0,v,w,w)R(z,0,z 0,0, ww)
= ((vx —v)? + wz> (vx + (wz — w')2>. (16)

Now we want to solve £ = 0 for x, for 1 — z and for vz.

2.7. Solving for x. To solve E = 0 for z, first express E in the form Ejz+ Ey(1—x) by expanding

it about x:

/
E(z,z,v,v",w,w

)

= E(,zv,v,ww)z+ EQ0,zv,0,ww)(l—x)

= ((v— —i—wz) <v+ (wz —w )2)90 + (V' +wz)(wz —w')(1 - z).
From Eix + Ep(1 — ) = 0 one has (Ey — Ey)z = Ey, thus

E(0, z,v,v ,w,w)
E(07 z,v,v’,w,w’) - E(l,z,v,v’,w,w’)
(v +wz)(wz — w')? ‘ (17)

(v +wz)(wz —w')? — ((v — )2+ wz) (v + (wz — w’)2>

Tr =

Constructing the table for the right side of (7)) gives:



Constituent

(1=2)1-v)( =v)(1 —w)(l —w')

(1—2)(1=0v)(1—=2)1—-wuw

Coeff Value

w w

0/0
0/0
0/0
0/0
0/0
0/0

(0.¢]

0/0
0/0
0/0
0/0
0/0
~1/0

(1—=2)(1—=0v)(1—=v)w(l—-w)
(1—2)(1=0)(1—v)ww

(1—=2)(1=0v)(1—=w)(l—-uw)
(1—2)(1—=v)(l—wuw
(1—-2)(1—=v)Ww(l—uw)
(1—=2)(1 =) wu

1

0/0
~1/0

1

(1—=2)v(l—=v)(1—-w)(l—-uw)

(I—=2)v(l =21 —w)w'
(1 —2)v(l —vHw(l —w')

(1—=2)v(l —v)ww'

0/1
0/2
0/1
0/2
0/0
~1/-1

1

0

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

(1—2)v'(1 —w)(1—w)

(1—=2)v'(1 —w)w'
(1—2z)v'w(l —w')

(1—2)vv'wu’
z(1—=v)(1 =21 —w)(1 —w)

z(1—=v)(1 =) — w)w’
2(1 —=v)(1 —v)w(l —w')

2(1 —v)(1 — v )ww’

0/0

1
1

0
0

1
0/0

1

0

0/0
~1/-1

1
0/0
0/0
0/0
0/0

(.¢]

1

1

0

0/0
0/0
~1/0

0

1

0

0/0
0/0
~1/0
~2/0

2(1 =)' (1 —w)(1 —w')
z2(1 =)' (1 — w)w’
2(1 —v)v'w(l —w')

2(1 — v)v'ww’

1
0

22.

o0

0/0

1

1

23.
24.
25.

0/0
0/1
0/2
~1/3

zo(l = 0")(1 —w)(1l —w')
zo(l —0")(1 — w)w’
zo(1 — v )w(l —w')

zv(l — v )ww’

26.
27.
28.
29.
30.
31.

o0

1 0

0

0/2
0/0
~1/-1

~2/0

zov' (1 —w)(1 —w')

zov' (1 — w)w’

0/0

1

o0

1
0

0
1

zov'w(l —w')

1

zov'ww'.

0/1

32.

Case II: Table for Equation (I7])



(30) + g ((17) +(18) + (20) + (21) + (24) + (29)>>z

(14) + (16) + g<(1) oo (5) + (7) + (13) + (15) ) (1 - 2)

v’ (1 —w)w' + 9((1 —0)(1 =01 -w) + (1 —v)ww + v (1 —w)(1— u/)))z
— 0
(30) (17)+(18) (20)+(24) (21)+(29)

7N TN 7N N

vo'w’ —i—%((l—v)(l—v’) + (1 - >>(1—z)

(14)+(16) (1)+-+(4) (5)+(7)+(13)+(15)

= <vv’(1—w)w’ + g((l—v)(l—v’)(l—w) + (1 —v)ww' + v’(l—w)(l—w’)))z

+ (vv’w' + g((l —v)(1=2") + (1 — w’)>>(1 —2). (18)

‘Formula (18] is Boole’s (IV.) on p. 234 of LT. ‘

2.8. Solving for 1 — z. From (E; — Ey)(1 — z) = E; one has

EQ,z,v,v ,w,w)

1_p —
v E(,z,v,v w,w') — E0,z,v,v,w,w)

((v —0')? + wz) (v + (wz — w’)2)
<(v —v)2 + wz) (v + (wz — w’)2> — (V' +wz)(wz — w')?

so construct the table for (I9):

10



Constituent

vow w Coeff Value

v

z

1— z)vv'ww

e O~ . e N~ e . . e e

oo

1/0

2/2

01 0 O

10.
11.

2/2

1
0
0

0
1
1
1
1

0 1

12.
13.

0 1

14. 0 1

15.
16.
17.
18.
19.
20.
21.

0 1

0 1

z(1—=0)(1=v)1 —w)(l —w')
z(1—=0)(1 =) —w)w
2(1 —v)(1 —v)w(l —w')

2(1 —v)(1 = v)ww'

0/0
0/0

0/0
0/0
1/0
0/0
0/0

0

0
0

1 0 0

1 0 0

0/0
0/0

0
0

1
1

2(1 = 0)v' (1 —w)(1 —w')
z2(1 —0)v' (1 — w)w’
2(1 —v)v'w(l —w')

2(1 — v)v'ww’

22.

o0

0/0

2/0
0/0

1
1

23.
24.
25.

0

zo(l =0 )(1 —w)(1l —w')
zo(l = v')(1 — w)w’
zv(l — v )w(l —w')

zv(1 — v )ww’

26.

27. 1 1 0 4/3 o0

28.
29.

zov' (1 — w)(1 —w')

0/0
zov' (1 — w)w'

0 0/0

0

1

0

o0

0/-1
2/0

30.

zov'w(l —w')

0

1

31.

E

s 3

U..I.

S =

Q =
[ox
= o

— —
S
[}
<
=

- &

= =
)

— 2
O

R

i

i

—

N

o



The table gives
1-z = ((25>+<26>+<28>+<32> + g(<m+<18>+<2o>+<21>+<24>+<29>)>z

0

+ ((9)+---+(12) + 0((1)+-~+(5)+(7)+(13)+(15)>(1—z)

= (vl -1 —-w) + vwu'

(25)+(26) (28)+(32)

5000w + (e + - ) )s

(17)4(18) (20)+(24) (21)+(29)
n <v(1—v/) +9((1—v)(1—v’) +oJ(1—w) ))(l—z)
— (O — ~————
(9)++(12) (1)++(4) (5)+(7)+(13)+(15)

= (v(l—v’)(l—w) + vww’

(A= -0-w) + a-vu + 1w -w))s

n <v(1—1/) +g((1—v)(1—v’) n U'(1—w/))>(1—z).

‘Formula ([20)) is Boole’s (V.) on p. 235 of LT. ‘

2.9. Solving for vz. Multiplying ([I8) by v gives
vr = (m/(l —w)w' + gvv’(l —w)(1 — w’))z

+ (vv'w' + gvv'(l — w’))(l —2).

‘Formula (1)) is Boole’s (VI.) on p. 235 of LT. ‘

12
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2.10. Summary of Solutions for Case II.
r = (m/(l —wh + g(a —o) (1= v)(1 —w) + (1 —v)ww + (1 —w)l— w'))>z
+ (m/w’ + g((l —v)(1=2") + (1 — w’)))(l —2) (22)
-z = <v(1 — )1 —w) + vww'
+ g(u o)1 - )1 —w) + (1—vwe + V1wl — w')>>z

n (U(l—v') +g<(1—v)(1—v') n v’(l—w’)))(l—z). (23)
vr = <m/(1—w)w/ + %m/(l—w)(l—u/))z

+ <m/w/ + gvv/(l - u/))(l —2). (24)

We consider each of the equations [22))—(24]) above in turn.

e For (22)) the coefficient of 1 — z cannot be made to vanish using a permissible substitution.

To make the coefficient of z vanish one needs to assign v = w = 1. Then (22]) reduces to
0
T = <v’w’ + 61}’(1 - w’))(l - 2).

e For (23)) the coefficient of z cannot be made to vanish using a permissible substitution. To

make the coefficient of 1 — 2 vanish one needs to assign v" = w’ = 1. Then (23] reduces to

l—z= <vw—|—g(1—v)w)z.

e For (24]) the coefficient of 1 — z cannot be made to vanish using a permissible substitu-

tion. To make the coefficient of z vanish one needs to assign w = 1. Then (24]) reduces to

0
vr = (vv'w’ + 6211/(1 - w’)) (I — 2). One can additionally set v = 1, giving the reduction

to v = (vw’ + %v(l — w’))(l — 2).
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3. RELEVANT EQUATIONAL ARGUMENTS

The above justifies the following equational arguments:

For Case I:
(b) vz = y
(@ =z = wy
z = wy
wz =
Y -z = (vw 4+ 31 -ow))(l-2)
xro= vwz
(c) v = wy (d) vz =y
wz = Y wz =Y
ur = vwz ST = vwe.

From Case I Boole claimed for categorical premises with like middle terms (p. 234 of LT)H

CONDITION OF INFERENCE.— One middle term, at least, universal.
RULE OF INFERENCE.— Equate the extremes.

For Case I1:
(@) =z = vy (b) vz i 31/
z = w(l—y) ' wz = —y 0
z = (vw+ vl —w))(l—2) d—z = (vw+g1-vw)z
o @ v =y
et 2 = iy
Loz = (vw+ gu(l —w))(1 - 2) sz = (vw+ Yo(1 —w))(1 - 2).

From Case II Boole claimed (pp. 235, 236 of LT) for premises with unlike middle termsH

F1rsT CONDITION OF INFERENCE.— At least one universal extreme.
RULE OF INFERENCE.— Change the quantity and quality of that extreme, and equate

the result to the other extreme.

SECOND CONDITION OF INFERENCE.— Two universal middle terms.
RULE OF INFERENCE.— Change the quantity and quality of either extreme, and

equate the result to the other extreme unchanged.

2These three rules from Cases I and II, for determining valid syllogisms, were originally announced as the main
contribution of Boole’s 1848 paper [2] The Calculus of Logic. Boole was quite pleased that he had abolished the need
for the Aristotelian concepts of figure and mood after redefining the notions of quality and quantity to apply to terms
instead of to propositions.

3Boole mistakenly said the first of these two rules applied when the middle terms had like quality.
14



4. THE ADVANTAGE OF USING NEGATED EQUATIONS

Note that all of Boole’s categorical propositions ®(X,Y’) can be expressed in either the form
af =0 or af # 0, where « is either x or 1 — x and ( is either y or 1 — y. For example, All not-X
is Y is expressed by (1 — z)(1 —y) = 0, and Some not-X is Y is expressed by (1 — x)y # 0.

By using negated equations as well as equations the mathematical description of valid syllogisms

can be condensed into four cases where @& changes x to 1 — x and vice-versa, etc.

ay = 0 ay = 0 ay = 0 ay = 0
By = 0 5= 0 By # 0 B #
Laf # 0 Laf =0 Laf # 0 Saf #0
These arguments are easily confirmed using Venn diagrams, just as the two forms of premises
ay # 0 ay # 0
By # 0 By # 0

can be shown to have no valid conclusion. (A formal proof theory for dealing with #, however,
requires more work.)
Boole limited his general theory to universal propositions for a good reason—there was no general

elimination theorem if one included particular propositions. For example consider the premises

Some Y is X
Some not-Y is X.

The result of eliminating Y is that X has at least two elements. However this conclusion cannot

be expressed in his algebra of logic.
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